zetafunction
- 371
- 0
think i have discovered an integral equation for the Xi-function
\Xi (z)= A\int_{-\infty}^{\infty} \phi (x/2)\Xi(x).\Xi(x+z) \frac{dx}{x}
with
\Phi(u) = \sum_{n=1}^{\infty}(2\pi ^{2} n^{4}e^{9u}-3\pi n^{2}e^{5u} )exp(-\pi n^{2}e^{4u})
and 'A' is a Real constant.
\Xi (z)= A\int_{-\infty}^{\infty} \phi (x/2)\Xi(x).\Xi(x+z) \frac{dx}{x}
with
\Phi(u) = \sum_{n=1}^{\infty}(2\pi ^{2} n^{4}e^{9u}-3\pi n^{2}e^{5u} )exp(-\pi n^{2}e^{4u})
and 'A' is a Real constant.