MHB Integral Evaluation: x^2+4 & 2+2sinx+cosx

  • Thread starter Thread starter mathworker
  • Start date Start date
  • Tags Tags
    Integrals
mathworker
Messages
110
Reaction score
0
Evaluate integrals:
$$1) \int\frac{dx}{x^2\sqrt{x^2+4}}$$
$$2) \int\frac{dx}{2+2\text{sin}x+\text{cos}x}$$
 
Last edited:
Mathematics news on Phys.org
1.)
I would begin with the substitution:

$$x=2\tan(\theta)\,\therefore\,dx=2\sec^2(\theta)$$

Thus, we now have:

$$\frac{1}{4}\int\frac{\cos(\theta)}{\sin^2(\theta)}\,d\theta$$

Now, let:

$$u=\sin(\theta)\,\therefore\,du=\cos(\theta)\,d \theta$$

and we now have:

$$\frac{1}{4}\int u^{-2}\,du=-\frac{1}{4u}+C$$

Back-substitute for $u$:

$$-\frac{1}{4\sin(\theta)}+C$$

Back-substitute for $\theta$:

$$\int\frac{dx}{x^2\sqrt{x^2+4}}=-\frac{\sqrt{x^2+4}}{4x}+C$$
 
2.)

I would begin by rewriting the denominator of the integrand:

$$2+2\sin(x)+\cos(x)=2\left(\sin^2\left(\frac{x}{2} \right)+\cos^2\left(\frac{x}{2} \right) \right)+4\sin\left(\frac{x}{2} \right)\cos\left(\frac{x}{2} \right)+\cos^2\left(\frac{x}{2} \right)-\sin^2\left(\frac{x}{2} \right)=$$

$$\left(\sin\left(\frac{x}{2} \right)+\cos\left(\frac{x}{2} \right) \right)\left(\sin\left(\frac{x}{2} \right)+3\cos\left(\frac{x}{2} \right) \right)$$

Next, the numerator may be rewritten as:

$$1=\left(\frac{1}{2}\cos\left(\frac{x}{2} \right)-\frac{1}{2}\sin\left(\frac{x}{2} \right) \right)\left(\sin\left(\frac{x}{2} \right)+3\cos\left(\frac{x}{2} \right) \right)-\left(\frac{1}{2}\cos\left(\frac{x}{2} \right)-\frac{3}{2}\sin\left(\frac{x}{2} \right) \right)\left(\sin\left(\frac{x}{2} \right)+\cos\left(\frac{x}{2} \right) \right)$$

Thus, the integrand may be rewritten as:

$$\frac{\frac{1}{2}\cos\left(\frac{x}{2} \right)-\frac{1}{2}\sin\left(\frac{x}{2} \right)}{\sin\left(\frac{x}{2} \right)+\cos\left(\frac{x}{2} \right)}-\frac{\frac{1}{2}\cos\left(\frac{x}{2} \right)-\frac{3}{2}\sin\left(\frac{x}{2} \right)}{\sin\left(\frac{x}{2} \right)+3\cos\left(\frac{x}{2} \right)}$$

Hence:

$$\int\frac{dx}{2+2\sin(x)+\cos(x)}=\ln\left|\frac{ \sin\left(\frac{x}{2} \right)+\cos\left(\frac{x}{2} \right)}{ \sin\left(\frac{x}{2} \right)+3\cos\left(\frac{x}{2} \right)} \right|+C$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 18 ·
Replies
18
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K