Integral: For any natural number , evaluate

  • Context: MHB 
  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary

Discussion Overview

The discussion revolves around evaluating the integral \[\int (x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{1/m}dx \quad \ x>0\] for any natural number \(m\). Participants explore various approaches to solve this integral, including substitutions and integration techniques.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Exploratory

Main Points Raised

  • One participant proposes a substitution \(x=u^{\frac{1}{m}}\) to transform the integral, leading to a new expression involving \(u\).
  • Multiple participants present similar steps in their evaluations, indicating a consistent approach to the substitution and integration process.
  • There is a correction noted regarding a typo in the derivative of \(2u^3+3u^2+6u\), suggesting that participants are attentive to detail in their calculations.
  • Participants derive a final expression for the integral, but the correctness of the steps and the final result remains unverified by consensus.

Areas of Agreement / Disagreement

While participants share similar methods and results, there is no explicit consensus on the correctness of the evaluations or the final expression derived. The discussion remains open to further verification and refinement.

Contextual Notes

Some steps in the integration process may depend on specific assumptions about the behavior of the functions involved, and the correctness of the derivative noted in the correction may affect the final result.

sbhatnagar
Messages
87
Reaction score
0
Challenge Problem: For any natural number $m$, evaluate

\[\int (x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{1/m}dx \ \quad \ x>0\]
 
Physics news on Phys.org
sbhatnagar said:
Challenge Problem: For any natural number $m$, evaluate

\[\int (x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{1/m}dx \ \quad \ x>0\]

Let, \(x=u^{\frac{1}{m}}\). Then the integral becomes,

\begin{eqnarray}

\int (x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{\frac{1}{m}}\,dx&=&\int u(u^2+u+1)(2u^2+3u+6)^{\frac{1}{m}}\,\frac{du}{mu^{1-\frac{1}{m}}}\\

&=&\frac{1}{m}\int u^{\frac{1}{m}}(u^2+u+1)(2u^2+3u+6)^{\frac{1}{m}}du\\

&=&\frac{1}{6m}\int (2u^3+3u^2+6u)^{\frac{1}{m}}\frac{d}{du}(2u^3+3u^2+6u)\, du\\

&=&\frac{1}{6m}\frac{(2u^3+3u^2+6u)^{\frac{1}{m}+1}}{\frac{1}{m}+1}+C\\

&=&\frac{x^{m+1}(2x^{2m}+3x^m+6)^{1+\frac{1}{m}}}{6(m+1)}+C\\

\therefore \int (x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{\frac{1}{m}}\,dx&=&\frac{x^{m+1}(2x^{2m}+3x^m+6)^{1+\frac{1}{m}}}{6(m+1)}+C\mbox{ for }m\in\mathbb{Z^{+}}

\end{eqnarray}

Kind Regards,
Sudharaka.
 
Last edited:
Sudharaka said:
Let, \(x=u^{\frac{1}{m}}\). Then the integral becomes,

\begin{eqnarray}

\int (x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{\frac{1}{m}}\,dx&=&\int u(u^2+u+1)(2u^2+3u+6)^{\frac{1}{m}}\,\frac{du}{mu^{1-\frac{1}{m}}}\\

&=&\frac{1}{m}\int u^{\frac{1}{m}}(u^2+u+1)(2u^2+3u+6)^{\frac{1}{m}}du\\

&=&\frac{1}{6m}\int (2u^3+3u^2+6u)^{\frac{1}{m}}\frac{d}{du}(2u^2+3u+6)\, du\\

&=&\frac{1}{6m}\frac{(2u^3+3u^2+6u)^{\frac{1}{m}+1}}{\frac{1}{m}+1}+C\\

&=&\frac{x^{m+1}(2x^{2m}+3x^m+6)^{1+\frac{1}{m}}}{6(m+1)}+C\\

\therefore \int (x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{\frac{1}{m}}\,dx&=&\frac{x^{m+1}(2x^{2m}+3x^m+6)^{1+\frac{1}{m}}}{6(m+1)}+C\mbox{ for }m\in\mathbb{Z^{+}}

\end{eqnarray}

Kind Regards,
Sudharaka.

Yeah, that's right!
 
Sudharaka said:
Let, \(x=u^{\frac{1}{m}}\). Then the integral becomes,

\begin{eqnarray}

\int (x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{\frac{1}{m}}\,dx&=&\int u(u^2+u+1)(2u^2+3u+6)^{\frac{1}{m}}\,\frac{du}{mu^{1-\frac{1}{m}}}\\

&=&\frac{1}{m}\int u^{\frac{1}{m}}(u^2+u+1)(2u^2+3u+6)^{\frac{1}{m}}du\\

&=&\frac{1}{6m}\int (2u^3+3u^2+6u)^{\frac{1}{m}}\frac{d}{du}(2u^2+3u+6)\, du\\

&=&\frac{1}{6m}\frac{(2u^3+3u^2+6u)^{\frac{1}{m}+1}}{\frac{1}{m}+1}+C\\

&=&\frac{x^{m+1}(2x^{2m}+3x^m+6)^{1+\frac{1}{m}}}{6(m+1)}+C\\

\therefore \int (x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{\frac{1}{m}}\,dx&=&\frac{x^{m+1}(2x^{2m}+3x^m+6)^{1+\frac{1}{m}}}{6(m+1)}+C\mbox{ for }m\in\mathbb{Z^{+}}

\end{eqnarray}

Kind Regards,
Sudharaka.

Typo in the third line the derivative should be of: \(2x^3+3u^2+6u\)

CB
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K