Integral: For any natural number , evaluate

  • Context: MHB 
  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
SUMMARY

The integral evaluation for any natural number \(m\) is given by the expression \(\int (x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{1/m}dx\) for \(x>0\). By substituting \(x=u^{1/m}\), the integral simplifies to \(\frac{x^{m+1}(2x^{2m}+3x^m+6)^{1+\frac{1}{m}}}{6(m+1)} + C\). This result is valid for \(m \in \mathbb{Z^{+}}\). A correction was noted regarding the derivative in the evaluation process, specifically that it should be of \(2u^3+3u^2+6u\).

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with substitution methods in integration
  • Knowledge of polynomial functions and their derivatives
  • Basic understanding of natural numbers and their properties
NEXT STEPS
  • Study advanced integration techniques, including integration by parts and trigonometric substitution
  • Explore the properties of natural numbers in mathematical analysis
  • Learn about the application of integrals in real-world problems
  • Investigate the use of symbolic computation tools like Mathematica or Maple for integral evaluation
USEFUL FOR

Mathematicians, students studying calculus, educators teaching integration techniques, and anyone interested in advanced mathematical problem-solving.

sbhatnagar
Messages
87
Reaction score
0
Challenge Problem: For any natural number $m$, evaluate

\[\int (x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{1/m}dx \ \quad \ x>0\]
 
Physics news on Phys.org
sbhatnagar said:
Challenge Problem: For any natural number $m$, evaluate

\[\int (x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{1/m}dx \ \quad \ x>0\]

Let, \(x=u^{\frac{1}{m}}\). Then the integral becomes,

\begin{eqnarray}

\int (x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{\frac{1}{m}}\,dx&=&\int u(u^2+u+1)(2u^2+3u+6)^{\frac{1}{m}}\,\frac{du}{mu^{1-\frac{1}{m}}}\\

&=&\frac{1}{m}\int u^{\frac{1}{m}}(u^2+u+1)(2u^2+3u+6)^{\frac{1}{m}}du\\

&=&\frac{1}{6m}\int (2u^3+3u^2+6u)^{\frac{1}{m}}\frac{d}{du}(2u^3+3u^2+6u)\, du\\

&=&\frac{1}{6m}\frac{(2u^3+3u^2+6u)^{\frac{1}{m}+1}}{\frac{1}{m}+1}+C\\

&=&\frac{x^{m+1}(2x^{2m}+3x^m+6)^{1+\frac{1}{m}}}{6(m+1)}+C\\

\therefore \int (x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{\frac{1}{m}}\,dx&=&\frac{x^{m+1}(2x^{2m}+3x^m+6)^{1+\frac{1}{m}}}{6(m+1)}+C\mbox{ for }m\in\mathbb{Z^{+}}

\end{eqnarray}

Kind Regards,
Sudharaka.
 
Last edited:
Sudharaka said:
Let, \(x=u^{\frac{1}{m}}\). Then the integral becomes,

\begin{eqnarray}

\int (x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{\frac{1}{m}}\,dx&=&\int u(u^2+u+1)(2u^2+3u+6)^{\frac{1}{m}}\,\frac{du}{mu^{1-\frac{1}{m}}}\\

&=&\frac{1}{m}\int u^{\frac{1}{m}}(u^2+u+1)(2u^2+3u+6)^{\frac{1}{m}}du\\

&=&\frac{1}{6m}\int (2u^3+3u^2+6u)^{\frac{1}{m}}\frac{d}{du}(2u^2+3u+6)\, du\\

&=&\frac{1}{6m}\frac{(2u^3+3u^2+6u)^{\frac{1}{m}+1}}{\frac{1}{m}+1}+C\\

&=&\frac{x^{m+1}(2x^{2m}+3x^m+6)^{1+\frac{1}{m}}}{6(m+1)}+C\\

\therefore \int (x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{\frac{1}{m}}\,dx&=&\frac{x^{m+1}(2x^{2m}+3x^m+6)^{1+\frac{1}{m}}}{6(m+1)}+C\mbox{ for }m\in\mathbb{Z^{+}}

\end{eqnarray}

Kind Regards,
Sudharaka.

Yeah, that's right!
 
Sudharaka said:
Let, \(x=u^{\frac{1}{m}}\). Then the integral becomes,

\begin{eqnarray}

\int (x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{\frac{1}{m}}\,dx&=&\int u(u^2+u+1)(2u^2+3u+6)^{\frac{1}{m}}\,\frac{du}{mu^{1-\frac{1}{m}}}\\

&=&\frac{1}{m}\int u^{\frac{1}{m}}(u^2+u+1)(2u^2+3u+6)^{\frac{1}{m}}du\\

&=&\frac{1}{6m}\int (2u^3+3u^2+6u)^{\frac{1}{m}}\frac{d}{du}(2u^2+3u+6)\, du\\

&=&\frac{1}{6m}\frac{(2u^3+3u^2+6u)^{\frac{1}{m}+1}}{\frac{1}{m}+1}+C\\

&=&\frac{x^{m+1}(2x^{2m}+3x^m+6)^{1+\frac{1}{m}}}{6(m+1)}+C\\

\therefore \int (x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{\frac{1}{m}}\,dx&=&\frac{x^{m+1}(2x^{2m}+3x^m+6)^{1+\frac{1}{m}}}{6(m+1)}+C\mbox{ for }m\in\mathbb{Z^{+}}

\end{eqnarray}

Kind Regards,
Sudharaka.

Typo in the third line the derivative should be of: \(2x^3+3u^2+6u\)

CB
 

Similar threads

  • · Replies 48 ·
2
Replies
48
Views
4K
Replies
2
Views
1K
Replies
8
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K