MHB Integral: For any natural number , evaluate

  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Integral
AI Thread Summary
The integral of the expression \((x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{1/m}\) for any natural number \(m\) is evaluated using the substitution \(x=u^{1/m}\). This transforms the integral into a simpler form, leading to the result \(\frac{x^{m+1}(2x^{2m}+3x^m+6)^{1+\frac{1}{m}}}{6(m+1)} + C\). A correction was noted regarding the derivative in the integration process. The final expression holds true for \(m\) in the set of positive integers. The discussion highlights the methodical approach to solving complex integrals.
sbhatnagar
Messages
87
Reaction score
0
Challenge Problem: For any natural number $m$, evaluate

\[\int (x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{1/m}dx \ \quad \ x>0\]
 
Mathematics news on Phys.org
sbhatnagar said:
Challenge Problem: For any natural number $m$, evaluate

\[\int (x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{1/m}dx \ \quad \ x>0\]

Let, \(x=u^{\frac{1}{m}}\). Then the integral becomes,

\begin{eqnarray}

\int (x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{\frac{1}{m}}\,dx&=&\int u(u^2+u+1)(2u^2+3u+6)^{\frac{1}{m}}\,\frac{du}{mu^{1-\frac{1}{m}}}\\

&=&\frac{1}{m}\int u^{\frac{1}{m}}(u^2+u+1)(2u^2+3u+6)^{\frac{1}{m}}du\\

&=&\frac{1}{6m}\int (2u^3+3u^2+6u)^{\frac{1}{m}}\frac{d}{du}(2u^3+3u^2+6u)\, du\\

&=&\frac{1}{6m}\frac{(2u^3+3u^2+6u)^{\frac{1}{m}+1}}{\frac{1}{m}+1}+C\\

&=&\frac{x^{m+1}(2x^{2m}+3x^m+6)^{1+\frac{1}{m}}}{6(m+1)}+C\\

\therefore \int (x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{\frac{1}{m}}\,dx&=&\frac{x^{m+1}(2x^{2m}+3x^m+6)^{1+\frac{1}{m}}}{6(m+1)}+C\mbox{ for }m\in\mathbb{Z^{+}}

\end{eqnarray}

Kind Regards,
Sudharaka.
 
Last edited:
Sudharaka said:
Let, \(x=u^{\frac{1}{m}}\). Then the integral becomes,

\begin{eqnarray}

\int (x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{\frac{1}{m}}\,dx&=&\int u(u^2+u+1)(2u^2+3u+6)^{\frac{1}{m}}\,\frac{du}{mu^{1-\frac{1}{m}}}\\

&=&\frac{1}{m}\int u^{\frac{1}{m}}(u^2+u+1)(2u^2+3u+6)^{\frac{1}{m}}du\\

&=&\frac{1}{6m}\int (2u^3+3u^2+6u)^{\frac{1}{m}}\frac{d}{du}(2u^2+3u+6)\, du\\

&=&\frac{1}{6m}\frac{(2u^3+3u^2+6u)^{\frac{1}{m}+1}}{\frac{1}{m}+1}+C\\

&=&\frac{x^{m+1}(2x^{2m}+3x^m+6)^{1+\frac{1}{m}}}{6(m+1)}+C\\

\therefore \int (x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{\frac{1}{m}}\,dx&=&\frac{x^{m+1}(2x^{2m}+3x^m+6)^{1+\frac{1}{m}}}{6(m+1)}+C\mbox{ for }m\in\mathbb{Z^{+}}

\end{eqnarray}

Kind Regards,
Sudharaka.

Yeah, that's right!
 
Sudharaka said:
Let, \(x=u^{\frac{1}{m}}\). Then the integral becomes,

\begin{eqnarray}

\int (x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{\frac{1}{m}}\,dx&=&\int u(u^2+u+1)(2u^2+3u+6)^{\frac{1}{m}}\,\frac{du}{mu^{1-\frac{1}{m}}}\\

&=&\frac{1}{m}\int u^{\frac{1}{m}}(u^2+u+1)(2u^2+3u+6)^{\frac{1}{m}}du\\

&=&\frac{1}{6m}\int (2u^3+3u^2+6u)^{\frac{1}{m}}\frac{d}{du}(2u^2+3u+6)\, du\\

&=&\frac{1}{6m}\frac{(2u^3+3u^2+6u)^{\frac{1}{m}+1}}{\frac{1}{m}+1}+C\\

&=&\frac{x^{m+1}(2x^{2m}+3x^m+6)^{1+\frac{1}{m}}}{6(m+1)}+C\\

\therefore \int (x^{3m}+x^{2m}+x^m)(2x^{2m}+3x^{m}+6)^{\frac{1}{m}}\,dx&=&\frac{x^{m+1}(2x^{2m}+3x^m+6)^{1+\frac{1}{m}}}{6(m+1)}+C\mbox{ for }m\in\mathbb{Z^{+}}

\end{eqnarray}

Kind Regards,
Sudharaka.

Typo in the third line the derivative should be of: \(2x^3+3u^2+6u\)

CB
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top