Integral Meaning: Work & Impulse

  • Thread starter Thread starter JanClaesen
  • Start date Start date
  • Tags Tags
    Impulse Work
AI Thread Summary
Work is defined as the integral of force over distance, while impulse is the integral of force over time. Kinetic energy and momentum share similar formulas, but they represent different concepts: kinetic energy is a scalar quantity, whereas momentum is a vector. The relationship between work and kinetic energy is established through the Work-Kinetic Energy theorem, while momentum is linked to the second law of motion. Understanding integrals and derivatives in physics requires recognizing the mathematical structures behind these concepts, as integrals can represent quantities that do not necessarily indicate change. Overall, the discussion emphasizes the distinct roles of work, impulse, kinetic energy, and momentum in describing motion.
JanClaesen
Messages
56
Reaction score
0
Work is the integral of force over a certain distance, impulse the integral of a force over a certain time span. A derivative tells us how fast something is changing at a certain point, an integral tells us how much something has changed up until that point, is this generally true (an integral is how much something has changed), or is there a better view to visualise the meaning of integration?
Kinetic energy and momentum have very similar formulas, though kinetic energy is the integral of the resulting force with respect to distance, and momentum with respect to time, is it wrong to visualise momentum the same way as kinetic energy?
 
Physics news on Phys.org
JanClaesen said:
Work is the integral of force over a certain distance, impulse the integral of a force over a certain time span. A derivative tells us how fast something is changing at a certain point, an integral tells us how much something has changed up until that point, is this generally true (an integral is how much something has changed), or is there a better view to visualise the meaning of integration?
Kinetic energy and momentum have very similar formulas, though kinetic energy is the integral of the resulting force with respect to distance, and momentum with respect to time, is it wrong to visualise momentum the same way as kinetic energy?

I'm not sure how to answer this question...but for the case, in which you're trying to relate kinetic energy and momentum, it is reasonable to say that both describe an object's motion, though you should note that momentum describes an inertial property of an object in motion as a vector; kinetic energy is a scalar description of an object in motion.
 
They do look similar at the begening but you have to take into account a very important fact that, i guess, you've misregarded. This is that momentum is a vector and energy is not. The kinetic energy formulae comes from the one of work (the path integral of a force over a trajectory trough the space) and the Work-Kinetic Energy theoreme which equals one to each other (mathematically demonstrable). Momentum, though, is a magnitude difined as p=mv where v is vectorial and so p is. 2nd Newton law claims that F=dp/dt (both p and F vectors) and there you have the integral for a certain variation of p betwen instants t1 and t2, knowing F(t).

Concernig to the interpretation of integrals and derivatives in "real" physics, I'd just say that you should get to understant the mathematical structure of the classical physics (in this case) and then realize that as long as a measurable magnitude is treated as a real valuated function, assuming all the algebra behind them, all operators (derivatives, integrals...) and theoremes (calculus main theorem...) they "use" may have their application to the physics magnitudes.

Hope this helps, please reply any question you have about my explanation or whatever JanClaesen.
 
An integral isn't how much something has changed, though. For example, the integral of a constant is the constant times the interval of integration, which is non-zero (for a non-zero constant), even though nothing changed. A good example is the integral of constant velocity, which is a simple displacement, not change in velocity or something along those lines.

I don't know, I can't think of any good description off the top of my head that has physical significant comparable to the definition you gave for the derivative.
 
Thanks, that was clarifying :smile:
Ah indeed, the constant function, the integral value over a certain x-period is relative? So if F(2) - F(1) > F(3) - F(2) 'more' has changed in the interval 1 -> 2, 'what' has changed depends on what the x and y value represent, in the case of distance and force we call it work.

So: the work done by a force from a point x1 to x2 equals the difference in energy of the system: the system has more possibility to do work.
The impulse of a force from t1 to t2 equals the difference in momentum of the system.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top