Integral of $\sqrt[3]{x}$ from 8 to 27

  • Thread starter Thread starter Dell
  • Start date Start date
  • Tags Tags
    Integral
Dell
Messages
555
Reaction score
0
given the integral


\inte\sqrt[3]{x}dx from 8 to 27

i called \sqrt[3]{x}=t
and integrate now from 2-3

x=t3
dx=3t2dt

\intet3t2dt
=3\intett2dt

u=t2
du=2tdt

dv=etdt
v=et

\intudv=uv-\intvdu

3\intett2dt=3(t2et-\intet2tdt)

is this correct so far?? do i now need to, again integrate in parts, now

u=t
du=dt
dv=etdt
v=et
?
 
Last edited by a moderator:
Physics news on Phys.org


Yes, integrate by parts again. It looks like you are doing just fine so far.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top