Integral (Partial-Frac Decomp) SIMPLE?

  • Thread starter Thread starter theRukus
  • Start date Start date
  • Tags Tags
    Integral
theRukus
Messages
49
Reaction score
0
Integral (Partial-Frac Decomp) **SIMPLE?

Homework Statement


\int^3_2 \frac{-dx}{x^2-1}


Homework Equations





The Attempt at a Solution


= \int^3_2 \frac{A}{x} + \frac{B}{x-1} dx For some integers A and B.

-1 = A(x-1) + B(x+0)

-1 = Ax - A + Bx

Split into two equations...

(1):: -1 = -A
(2):: A = 1

(3):: 0 = A + B

Sub (2) -> (3)

(3):: 0 = 1 + B
(4):: B = -1

So, from above..

\int^3_2 \frac{-dx}{x^2-1} = \int^3_2 \frac{1}{x} - \frac{1}{x-1} dx

= ln|x| \right|^3_2 - ln|x-1| \right|^3_2

= ln(3) - ln(2) - ln(2) + ln(1)

= ln(3) - 2ln(2) + ln(1)

I entered the final line into the answer box for my course assignment and it said wrong... So I must be doing something wrong.. =(

Any help is greatly appreciated. Love you PhysicsForums xx
 
Physics news on Phys.org


theRukus said:

Homework Statement


<br /> \int^3_2 \frac{-dx}{x^2-1}<br /><br /> \int^3_2 \frac{A}{x} + \frac{B}{x-1} dx<br /> For some integers A and B.

Can you justify this? I don't think it separates like that.
 
Last edited:


theRukus said:

Homework Statement


\int^3_2 \frac{-dx}{x^2-1}

The Attempt at a Solution


= \int^3_2 \frac{A}{x} + \frac{B}{x-1} dx For some integers A and B.

Wrong at the first step. x2-1 = (x+1)(x-1), not x(x-1).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top