Integral Problem: Find Solution to 1/((e^(x-1)+1)) & (x)/((e^(x-1)+1))

  • Thread starter Thread starter cragar
  • Start date Start date
  • Tags Tags
    Integral
cragar
Messages
2,546
Reaction score
3

Homework Statement


integrate 1/((e^(x-1)+1))
and (x)/((e^(x-1)+1))





The Attempt at a Solution


i tried using integration parts , and partial fractions but i am not really sure what to do
any help will be much appreciated .
 
Physics news on Phys.org
I'd start by multiplying both numerator and denominator by e...after that, just use the following trick:

\frac{e}{e^x+e}=\frac{e+e^x-e^x}{e^x+e}=1-\frac{e^x}{e^x+e}
 
thanks for you help , that is a really slick trick
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top