Sorry, I was at a loss earlier and did that based on what a friend said because I had no idea. It did make sense to me though so it was my own error. In regards to the arithmetic: I was under the impression when you have i in the denominator, to put the fraction in a+bi form, you multiply the fraction by the conjugate of the bottom. For example, if z= 2/(1+i) you multiply by (1-i)/(1-i) to get (2-2i)/2= 1-i. So I applied that same idea, albeit quite improperly apparently, to pi/(2+i). So basically I multiplied the top and bottom of pi/(2+i) by the conjugate of the denominator, i.e 2-i.
In regards to your answer: Once again, thank you. That's extremely simple. The only thing I'm not understanding at first glance is why does exp(2*i*(pi/2+i))= exp(pi*i-2)? I must say, I find it ironic I am able to prove some of the more challenging theorems, yet I apparently suck at simple complex arithmetic.