Telemachus
- 820
- 30
Homework Statement
I must solve using partial fractions:
\displaystyle\int_{}^{}\displaystyle\frac{dx}{8x^3+1}
The Attempt at a Solution
The only real root for the denominator: -\displaystyle\frac{1}{2}
Then 8x^3+1=(x+\displaystyle\frac{1}{2})(8x^2-4x+2)
Then I did:
\displaystyle\frac{1}{(x+\displaystyle\frac{1}{2})(8x^2-4x+2)}=\displaystyle\frac{A}{(x+\displaystyle\frac{1}{2})}+\displaystyle\frac{Bx+C}{(8x^2-4x+2)}
I constructed the system:
A=\displaystyle\frac{1}{6} B=\displaystyle\frac{-4}{3} C=\displaystyle\frac{4}{3}
\displaystyle\int_{}^{}\displaystyle\frac{dx}{8x^3+1}=\displaystyle\frac{1}{6}\displaystyle\int_{}^{}\displaystyle\frac{dx}{(x+\displaystyle\frac{1}{2})}dx-\displaystyle\frac{4}{3}\displaystyle\int_{}^{}\displaystyle\frac{x-1}{(8x^2-4x+2)}dx
Completing the square 8x^2-4x+2=8(x-\displaystyle\frac{1}{4})^2+\displaystyle\frac{3}{2}\displaystyle\int_{}^{}\displaystyle\frac{x-1}{(8x^2-4x+2)}dx=\displaystyle\int_{}^{}\displaystyle\frac{x-1}{8(x-\displaystyle\frac{1}{4})^2+\displaystyle\frac{3}{2}}dx
\displaystyle\int_{}^{}\displaystyle\frac{x-1}{8(x-\displaystyle\frac{1}{4})^2+\displaystyle\frac{3}{2}}=\displaystyle\int_{}^{}\displaystyle\frac{x}{8(x-\displaystyle\frac{1}{4})^2+\displaystyle\frac{3}{2}}dx-\displaystyle\int_{}^{}\displaystyle\frac{1}{8(x-\displaystyle\frac{1}{4})^2+\displaystyle\frac{3}{2}}dx
t=x-\displaystyle\frac{1}{4}\Rightarrow{x=t+\displaystyle\frac{1}{4}}
dt=dx
\displaystyle\int_{}^{}\displaystyle\frac{x}{8(x-\displaystyle\frac{1}{4})^2+\displaystyle\frac{3}{2}}dx=\displaystyle\int_{}^{}\displaystyle\frac{t+\displaystyle\frac{1}{4}}{8t^2+\displaystyle\frac{3}{2}}dt=\displaystyle\frac{1}{8}\displaystyle\int_{}^{}\displaystyle\frac{t}{t^2+\displaystyle\frac{3}{2}}dt+\displaystyle\frac{1}{32}\displaystyle\int_{}^{}\displaystyle\frac{dt}{t^2+\displaystyle\frac{3}{2}}
Am I on the right way? Its too tedious. The statement says I must use partial fractions, but anyway if you see a simpler way of solving it let me know.
Last edited: