Integrals: Show $\alpha$ Not Int Multiple of $\pi$ and $s, \lambda >0$

Click For Summary
SUMMARY

This discussion focuses on two integral problems involving specific mathematical expressions. The first integral, for $\alpha$ not an integer multiple of $\pi$, is evaluated as $\displaystyle \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \Big( \frac{\cos x + \sin x}{\cos x - \sin x} \Big)^{\cos \alpha} \ dx = \frac{\pi}{2 \sin \left(\pi \cos^{2} \frac{\alpha}{2} \right)}$. The second integral, for $s,\lambda >0$ and $0 \le \alpha < \frac{\pi}{2}$, is shown to equal $\displaystyle \int_{0}^{\infty} x^{s-1} e^{-\lambda x \cos \alpha} \cos(\lambda x \sin \alpha) \ dx = \frac{\Gamma(s) \cos (\alpha s)}{\lambda^{s}}$. The discussion also highlights a correction regarding the variable in the second integral, clarifying that it should be $x^{s-1}$ instead of $t^{s-1}$.

PREREQUISITES
  • Understanding of integral calculus, particularly definite integrals.
  • Familiarity with the Gamma function and its properties.
  • Knowledge of trigonometric identities and transformations.
  • Experience with complex analysis, specifically contour integration techniques.
NEXT STEPS
  • Study the properties of the Gamma function and its applications in integrals.
  • Learn about contour integration and its use in evaluating real integrals.
  • Explore trigonometric identities relevant to integrals involving sine and cosine functions.
  • Investigate the relationship between integrals and beta functions, particularly in the context of variable transformations.
USEFUL FOR

Mathematicians, students studying advanced calculus, and researchers in mathematical analysis who are interested in integral evaluations and techniques in complex analysis.

polygamma
Messages
227
Reaction score
0
1) Show that for $\alpha$ not an integer multiple of $\pi$, $\displaystyle \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \Big( \frac{\cos x + \sin x}{\cos x - \sin x} \Big)^{\cos \alpha} \ dx = \frac{\pi}{2 \sin \left(\pi \cos^{2} \frac{\alpha}{2} \right)} $.2) Show that for $s,\lambda >0$ and $0 \le \alpha < \frac{\pi}{2}$, $\displaystyle \int_{0}^{\infty} x^{s-1} e^{-\lambda x \cos \alpha} \cos(\lambda x \sin \alpha) \ dx = \frac{\Gamma(s) \cos (\alpha s)}{\lambda^{s}}$.
 
Last edited:
Physics news on Phys.org
I think there is a mistake in the second question $$t^{s-1}$$ is completely independent of the integral so it can be taken out of the integration .

Maybe , you meant instead $$x^{s-1}$$
 
ZaidAlyafey said:
I think there is a mistake in the second question $$t^{s-1}$$ is completely independent of the integral so it can be taken out of the integration .

Maybe , you meant instead $$x^{s-1}$$

Yes. That's what I meant. Thanks.
 
Random Variable said:
1) Show that for $\alpha$ not an integer multiple of $\pi$, $\displaystyle \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \Big( \frac{\cos x + \sin x}{\cos x - \sin x} \Big)^{\cos \alpha} \ dx = \frac{\pi}{2 \sin \left(\pi \cos^{2} \frac{\alpha}{2} \right)} $.
Cool problem : $$ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \Big( \frac{\cos x + \sin x}{\cos x - \sin x} \Big)^{\cos \alpha} \ dx$$

$$ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \left( \frac{1+\sin(2x)}{\cos(2x)} \right) ^{\cos \alpha} \, dx$$

Now we use the change of variable : $$t=\frac{\pi}{4}-x$$

$$\int^{\frac{\pi}{2}}_0 \left(\frac{1+\cos 2t }{\sin 2t } \right)^{\cos \alpha }\, dt$$

$$ \int ^{\frac{\pi}{2}}_0 (\cos t )^{\cos \alpha } \cdot (\sin t)^{-\cos \alpha }dt$$

Now using the beta identity we get :

$$\frac{1}{2} \text{B} \left( \frac{1+\cos \alpha }{2}, \frac{1-\cos \alpha }{2}\right) \, = \frac{1}{2} \Gamma \left(\frac{1+\cos \alpha }{2}\right) \cdot \Gamma \left(\frac{1-\cos \alpha }{2}\right)$$

Now we use the reflection formula to get :

$$\frac{\pi}{2 \sin \left( \pi \cos^2 \left( \frac{\alpha}{2} \right) \right) }$$
 
A slightly different approach is $ \displaystyle \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \Big( \frac{\cos x + \sin x}{\cos x - \sin x} \Big)^{\cos \alpha} \ dx = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \Bigg( \frac{ \sin \left(\frac{\pi}{4} +x \right)}{\sin \left(\frac{\pi}{4}-x\right)}\Bigg)^{\cos \alpha} dx $

$ \displaystyle = \int_{0}^{\frac{\pi}{2}} \Bigg( \frac{ \sin \left(\frac{\pi}{2} - u \right)}{\sin u}\Bigg)^{\cos \alpha} du = \int_{0}^{\frac{\pi}{2}} (\cos u)^{\cos \alpha} (\sin u)^{-\cos \alpha} \ du$
 
I solved the second one , should I post the solution ?
 
Random Variable said:
2) Show that for $s,\lambda >0$ and $0 \le \alpha < \frac{\pi}{2}$, $\displaystyle \int_{0}^{\infty} x^{s-1} e^{-\lambda x \cos \alpha} \cos(\lambda x \sin \alpha) \ dx = \frac{\Gamma(s) \cos (\alpha s)}{\lambda^{s}}$.
.
.
.
.
.
.
.

Here is the solution for the second one :

$$\cos(\lambda x \sin \alpha) = \frac{e^{ i\lambda x \sin \alpha}+e^{-i\lambda x \sin \alpha}}{2}$$

$$\int_{0}^{\infty} x^{s-1} e^{-(\lambda x \cos \alpha )} \left( \frac{e^{ i\lambda x \sin \alpha}+e^{-i\lambda x \sin \alpha}}{2} \right) dx $$

$$\frac{1}{2}\int_{0}^{\infty} x^{s-1} e^{-\lambda x (\cos \alpha -i\sin \alpha)}\, dx+\, \frac{1}{2}\int_{0}^{\infty} x^{s-1} e^{-\lambda x (\cos \alpha +i\sin \alpha)} \, dx$$

$$\frac{1}{2}\int_{0}^{\infty} x^{s-1} e^{- \left(\lambda \,e^{i \alpha}\,x\right)}\, dx+\, \frac{1}{2}\int_{0}^{\infty} x^{s-1} e^{- \left(\lambda \,e^{-i \alpha}\, x\right)} \, dx$$

Then we use the Laplace transform :

$$\frac{\Gamma(s)}{ 2\left(\lambda \,e^{i \alpha}\right)^s }\,+\,\frac{\Gamma(s)}{2\left(\lambda \,e^{-i \alpha}\right)^s }\,=\frac{\Gamma(s)}{\lambda^s} \left( \frac{\,e^{i \alpha \, s}+\, e^{-i \alpha \, s}}{2} \right)\, = \, \frac{\Gamma(s) \cos (\alpha s)}{\lambda^{s}}$$
 
If you have another approach, please share it ... :cool:
 
Here's an alternative solution using contour integration.

Let $f(z) = z^{s-1}e^{-\lambda z}$ and integrate around a sector in the first quadrant that forms an angle of $\alpha$ with the positive real axis. The contour needs to be indented at the origin since $z=0$ is a branch point.

The integral evaluates to zero along the big arc and the small arc in the limit. Just use Jordan's inequality.

So we have $\displaystyle \int_{0}^{\infty} f(x) dx - \int_{0}^{\infty} f(te^{ia}) \ dt =0 $

or $ \displaystyle \int_{0}^{\infty} x^{s-1} e^{-\lambda x} \ dx - e^{ias} \int_{0}^{\infty} t^{s-1} e^{-\lambda t \cos \alpha} e^{-i \lambda t \sin a} \ dt =0$

$\displaystyle \implies \int_{0}^{\infty} t^{s-1}e^{-\lambda t \cos \alpha} \Big(\cos(\lambda t \sin \alpha)- i \sin (\lambda t \sin\alpha) \Big) \ dt = e^{-ias} \int_{0}^{\infty}x^{s-1} e^{-\lambda x} \ dx = e^{-ias} \frac{\Gamma(s)}{\lambda^{s}}$

$ \displaystyle = \Big(\cos (as) - i \sin (as) \Big) \frac{\Gamma(s)}{\lambda^{s}}$

Now just equate the real parts on both sides of the equation.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 29 ·
Replies
29
Views
5K