Integrate 1/(x^2 - 2x + 4) using Homework Equations and a Step-by-Step Method

  • Thread starter Thread starter Pyroadept
  • Start date Start date
  • Tags Tags
    Integration
Pyroadept
Messages
82
Reaction score
0

Homework Statement


Integrate the following: ∫[1/(x^2 - 2x + 4)]dx



Homework Equations


∫[1/(x^2 + a^2)]dx = [1/a](arctan(x/a)) + C


The Attempt at a Solution



Let A = x^2 - 2x + 4 = x^2 - 2x + 1 + 3
= (x - 1)^2 + (√3)^2

So ∫[1/A]dx = [1/√3]arctan[(x-1)/√3] + C

Is this correct?

Thanks for any help
 
Physics news on Phys.org
Looks good to me :smile:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top