Integrate along curve, book has wrong answer?

Addez123
Messages
199
Reaction score
21
Homework Statement
$$\int _C y ds$$
where C is determined by
$$x^2+y^2=a^2, y >= 0$$
Relevant Equations
Math
So it's basically a half circle with radius a.
y = asin(t)
$$\int_0^{\pi} asin(t) dt = -acos(t) |_0^{\pi} = 2a$$

The book says the answer is ##2a^2##, but maybe that's wrong?
 
Physics news on Phys.org
Addez123 said:
Homework Statement:: $$\int _C y ds$$
where C is determined by
$$x^2+y^2=a^2, y >= 0$$
Addez123 said:
So it's basically a half circle with radius a.
y = asin(t)
##\int_0^{\pi} asin(t) dt = -acos(t) |_0^{\pi} = 2a##
The book says the answer is ##2a^2##, but maybe that's wrong?
I believe the book's answer. Notice that the integral includes ds, not dt.
Note that ##ds = \sqrt{(dx/dt)^2 + (dy/dt)^2}dt##
 
Last edited:
  • Like
Likes vanhees71, Addez123 and FactChecker
Thanks! Calculating dS was what I was missing, now it checks out!
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top