Integrate ∫ cos(1/x)/x^2 dx: Steps & Solutions

  • Thread starter Thread starter maniaku
  • Start date Start date
  • Tags Tags
    Integration
maniaku
Messages
1
Reaction score
0
∫ (cos (1/x) / x^2 dx (Please show steps.)
 
Physics news on Phys.org
You show us *your* steps, and then we can offer tutorial help. We do not do your work for you here on the PF.
 
Welcome to the former People's Empire! :biggrin:

\int \frac{cos \frac{1}{x}}{x^2} dx
Why couldn't you try the method of substitution? Find an appropriate substitution, and then you need to find something that can serve as du or rather, something that can simplify the denominator.

I hope you enjoy yourself!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top