Silversonic
- 121
- 1
Homework Statement
Integrate \nabla^{2} (\frac{1}{|\underline{r} - \underline{r}'|}) over the volume of a sphere using the divergence theorem.
Homework Equations
\nabla^{2} (\frac{1}{|\underline{r} - \underline{r}'|}) = -4\pi\delta^{(3)}(\underline{r} - \underline{r}') (i.e. it's a dirac delta function, this just tells me that the answer I should get if I integrate over the volume is -4\pi)
\nabla^{} (\frac{1}{|\underline{r} - \underline{r}'|}) = -\frac{(\underline{r} - \underline{r}')}{|\underline{r} - \underline{r}'|^{3}}
\underline{r} = (x,y,z)
\underline{r'} = (x',y',z') (note that the dashes do not mean the differential of, just a different point in space from x,y,z).
And the divergence theorem
The Attempt at a Solution
\int_{V'}\nabla^{2} (\frac{1}{|\underline{r} - \underline{r}'|} )dV'
=
\int_{S'}\nabla (\frac{1}{|\underline{r} - \underline{r}'|} ) \circ d\underline{S}' (by the divergence theorem)
d\underline{S}' = \hat{\underline{n}} dS'
dS' = R^{2}sin(\theta)d\theta d\phi
I guess R should be the radius of the sphere. In which case I choose r' = R?
= \int_{S'}-\frac{(\underline{r} - \underline{r}')}{|\underline{r} - \underline{r}'|^{3}} \circ d\underline{S}'
Then, putting r' = R
\int_{S'}-\frac{(\underline{r} - \underline{R})}{|\underline{r} - \underline{R}|^{3}} \circ \hat{\underline{n}} dS'
=
\int^{2\pi}_{0} \int^{\pi}_{0} -(\frac{(\underline{r} - \underline{R})}{|\underline{r} - \underline{R}|^{3}} \circ \hat{\underline{n}}) R^{2}sin(\theta)d\theta d\phi
Am I right so far? This looks like a complete mess, and I'm not sure what to do with the dot product of the vector and the normal vector?