Integrating Misc Integral with \int \frac{x}{\sqrt{3-x^4}}dx

  • Thread starter Thread starter nameVoid
  • Start date Start date
  • Tags Tags
    Integral
nameVoid
Messages
238
Reaction score
0
<br /> \int \frac{x}{\sqrt{3-x^4}}dx<br />
<br /> u=x^2<br />
<br /> du=2xdx<br />
<br /> \frac{1}{2}\int\frac{du}{\sqrt{3-u^2}}<br />
<br /> u=\sqrt{3}sinT<br />
<br /> du=\sqrt{3}cosTdT<br />
<br /> \frac{1}{2}\int \frac{\sqrt{3}cosT}{\sqrt{3}cosT}dT<br /> <br />
<br /> \frac{x}{2}+C<br />
 
Physics news on Phys.org
Not x/2+C. T/2+C.
 
You need not do the second u-substitution. Use an integral table to solve it once you have done the first u-substitution. You can google 'integral table' to find one if you don't have one in your book.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top