Integrating sec^2(x): How to Refresh Your Memory

  • Thread starter Thread starter jaredmt
  • Start date Start date
  • Tags Tags
    Integrate
jaredmt
Messages
120
Reaction score
0

Homework Statement


how do i integrate sec^2(x)
i completely forgot how to do this one. i know i could rewrite it as:
tan^2(x) + 1 and integrate that, but i forgot how to integrate that 1 too


Homework Equations





The Attempt at a Solution

 
Physics news on Phys.org
tan^2(x) + 1 is "obviously" the derivative of tan(x).
 
All you need to remember is that

\frac{d}{dx}(tanx)= sec^2x

and you should be well off now.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top