darioe
- 5
- 0
Homework Statement
Integrate at interval [0,T] (T and k are given real numbers) the
2. Relevant equation
_{0}^{T}\int \frac{sin(p)}{\sqrt{k+p}}\ dp
The Attempt at a Solution
\ Using\ substitution\ u\ =\ tan(p/2),\ results\ as\ :\ p\ =\ 2*arctan(u)\ \ ;\ \ dp\ =\ \frac{2}{1+u^2}\ du\ ;\
sin(p)\ =\ \frac{2*u}{1+u^2} ;\ cos(p)\ =\ \frac{1-u^2}{1+u^2} ;\
_{0}^{T}\int \frac{sin(p)}{\sqrt{k+p}}\ dp \ \ =\ _{0}^{2*arctan(T)}\int \frac{2*u*2}{(1+u^2)\ *\ \sqrt{k+2*arctan(u)}\ *\ (1+u^2)}\ du
\ ¿\ Could\ someone\ get\ a\ better\ result\ ?
(maybe with the substitution u = 2* sin(p) )
...