B Integrating velocity equation problem

Sho Kano
Messages
372
Reaction score
3
upload_2016-4-9_23-55-27.png

I've already completed the first question, but with number two, it's a different case. Here's my attempt:
\frac { d{ v }_{ y } }{ dt } \quad =\quad -g\quad -\quad \beta { v }_{ y }\\ \frac { d{ v }_{ y } }{ -g\quad -\quad \beta { v }_{ y } } \quad =\quad dt\\ \int { \frac { d{ v }_{ y } }{ -g\quad -\quad \beta { v }_{ y } } } \quad =\quad \int { dt } \\ \frac { -1 }{ \beta } ln(-g-\beta { v }_{ y })\quad =\quad t\\
natural log of a negative?
 
Physics news on Phys.org
EDIT: I seem to have figured out the answer right after posting this?
\frac { -1 }{ \beta } ln(-g-\beta { v }_{ y })\quad =\quad t\\ ln(-g-\beta { v }_{ y })\quad =\quad -t\beta \\ -g-\beta { v }_{ y }\quad =\quad { e }^{ -t\beta }
 
In general ##\int \frac{1}{x} dx= \log{|x|}+c##
 
Ssnow said:
In general ##\int \frac{1}{x} dx= \log{|x|}+c##
log base e right?
 
yes, ##\int \frac{1}{x}=\ln{|x|}+c##
 
Sho Kano said:
##−g−βvy=e−tβ\frac { -1 }{ \beta } ln(-g-\beta { v }_{ y })\quad =\quad t\\ ln(-g-\beta { v }_{ y })\quad =\quad -t\beta \\ -g-\beta { v }_{ y }\quad =\quad { e }^{ -t\beta }##

if ##-g-\beta v_{y}>0## this is part of your solution, you must use the condition that ##v_{y0}=0##, but attention that you forgot the integration constant in your solution ...
 
Ssnow said:
if ##-g-\beta v_{y}>0## this is part of your solution, you must use the condition that ##v_{y0}=0##, but attention that you forgot the integration constant in your solution ...
The integration constant is just the initial condition, which is 0
 
mmm, I don't think, assuming ##-g-\beta v_{y}>0## put the condition ##v_{y}=0## with ##t=0## in

##\ln{(-g-\beta v_{y})}=-t\beta +c ##
 
You can see the value of ##c## also from ##\ln{|-g-\beta v_{y}|}=-t\beta + c##...
 
  • #10
Ssnow, not sure I follow you. From post #1, 3rd line of my attempt, the limits of integration are:

left side: 0 to v
(its 0 since initial velocity is given to be 0)
right side: 0 to t
 
  • #11
You forget the constant ##\ln{g}##:

##\int_{0}^{v_{y}}\frac{w}{-g-\beta w}=-\frac{1}{\beta}\ln{|-g-\beta v_{y}|}+\frac{1}{\beta}\ln{g}##
 
  • Like
Likes Sho Kano
  • #12
Ssnow said:
You forget the constant ##\ln{g}##:

##\int_{0}^{v_{y}}\frac{w}{-g-\beta w}=-\frac{1}{\beta}\ln{|-g-\beta v_{y}|}+\frac{1}{\beta}\ln{g}##
I see now, thanks!
 
Back
Top