Integration: (3x^2+5x+1)^3(6x+5) - Should I Use Table Method?

  • Thread starter Thread starter naspek
  • Start date Start date
  • Tags Tags
    Integration
naspek
Messages
176
Reaction score
0
how to integrate ((3x^2)+5x+1)^3 (6x + 5) ?
should i use table method?
 
Physics news on Phys.org
Your integrand is of the form f'(g(x))*g'(x) (' denotes a derivative). How can you use that?
 
Try a u substitution.
 
got it! thanks guys! =)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top