Integration by Partial Fractions - Long Problem

RedBarchetta
Messages
49
Reaction score
1

Homework Statement


<br /> \int {\frac{{2s + 2}}<br /> {{(s^2 + 1)(s - 1)^3 }}ds} <br />

The Attempt at a Solution



This is a long one...First, I split the integrand into partial fractions and find the coefficients:

<br /> \begin{gathered}<br /> \frac{{2s + 2}}<br /> {{(s^2 + 1)(s - 1)^3 }} = \frac{{As + B}}<br /> {{s^2 + 1}} + \frac{C}<br /> {{s - 1}} + \frac{D}<br /> {{(s - 1)^2 }} + \frac{E}<br /> {{(s - 1)^3 }} \hfill \\<br /> 2s + 2 = (As + B)(s - 1)^3 + C(s^2 + 1)(s - 1)^2 + D(s^2 + 1)(s - 1) + E(s^2 + 1) \hfill \\<br /> 2s + 2 = (As + B)(s^3 - 3s^2 + 3s - 1) + C(s^4 - 2s^3 + 2s^2 - 2s + 1) + D(s^3 - s^2 + s - 1) + E(s^2 + 1) \hfill \\ <br /> \end{gathered} <br />

Now find the coefficients. I suppose you can use a calculator if you want to check for these. :smile:

<br /> \begin{gathered}<br /> s^4 :A + C = 0 \hfill \\<br /> s^3 :B - 3A - 2C + D = 0 \hfill \\<br /> s^2 :3A - 3B + 2C - D = 0 \hfill \\<br /> s^1 :3B - A - 2C + D = 2 \hfill \\<br /> s^0 :C - B - D + E = 2 \hfill \\ <br /> \end{gathered} <br />

After solving...

<br /> \begin{gathered}<br /> A: - 1/2 \hfill \\<br /> B:1/2 \hfill \\<br /> C:1/2 \hfill \\<br /> D: - 1 \hfill \\<br /> E:1 \hfill \\ <br /> \end{gathered} <br />

<br /> \begin{gathered}<br /> \int {\frac{{2s + 2}}<br /> {{(s^2 + 1)(s - 1)^3 }}} = \int {\left[ {\frac{{As + B}}<br /> {{s^2 + 1}} + \frac{C}<br /> {{s - 1}} + \frac{D}<br /> {{(s - 1)^2 }} + \frac{E}<br /> {{(s - 1)^3 }}} \right]} ds \hfill \\<br /> \int {\frac{{2s + 2}}<br /> {{(s^2 + 1)(s - 1)^3 }}} = \int {\left[ {\frac{{( - 1/2)s + (1/2)}}<br /> {{s^2 + 1}} + \frac{{1/2}}<br /> {{s - 1}} + \frac{{ - 1}}<br /> {{(s - 1)^2 }} + \frac{1}<br /> {{(s - 1)^3 }}} \right]} ds \hfill \\ <br /> \end{gathered} <br />

Alright, now just solving the integral:

<br /> \begin{gathered}<br /> \int {\frac{{2s + 2}}<br /> {{(s^2 + 1)(s - 1)^3 }}} = \frac{1}<br /> {2}\int {\frac{{ds}}<br /> {{s^2 + 1}} - \frac{1}<br /> {2}\int {\frac{{ds}}<br /> {{s^2 + 1}}} + \int {\frac{{1/2}}<br /> {{s - 1}}ds - } } \int {\frac{{ds}}<br /> {{(s - 1)^2 }} + \int {\frac{{ds}}<br /> {{(s - 1)^3 }}} } \hfill \\<br /> \int {\frac{{2s + 2}}<br /> {{(s^2 + 1)(s - 1)^3 }}} = \frac{1}<br /> {2}\tan ^{ - 1} s - \frac{1}<br /> {4}\ln (s^2 + 1) + \frac{1}<br /> {2}\ln |s - 1| + \frac{1}<br /> {{s - 1}} - \frac{1}<br /> {{2(s - 1)^2 }} + C \hfill \\ <br /> \end{gathered} <br />

Here's what the book says:

<br /> \int {\frac{{2s + 2}}<br /> {{(s^2 + 1)(s - 1)^3 }}} = \frac{{ - 1}}<br /> {{(s - 1)^2 }} + \frac{1}<br /> {{(s - 1)}} + \tan ^{ - 1} s + C<br />
 
Physics news on Phys.org
RedBarchetta said:
<br /> \begin{gathered}<br /> s^2 :3A - 3B + 2C - D = 0 \hfill \\<br /> \end{gathered} <br />
You forgot E as coefficient of s^2.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top