Integration By Substitution It's Been A While

Click For Summary
SUMMARY

The discussion centers on the application of integration by substitution to solve for the electric field generated by a line charge. The integral in question is (2kz/4(pi)(epsilon_0) * 1/(z^2+x^2)^(3/2)) dx, with the solution being (2kz/4(pi)(epsilon_0) * (x/[z^2(z^2+x^2)^(1/2)]. The user initially struggles with the substitution u = (z^2+x^2) and the resulting differential du = 2x dx, leading to confusion over the presence of x in the numerator. Ultimately, a more effective substitution u = x/sqrt(x^2+z^2) is suggested, simplifying the integration process.

PREREQUISITES
  • Understanding of electric fields and line charges
  • Familiarity with integration techniques, specifically integration by substitution
  • Knowledge of calculus, including differentiation and integration of functions
  • Basic understanding of vector components in physics
NEXT STEPS
  • Study the method of integration by substitution in calculus
  • Learn about electric fields generated by different charge distributions
  • Explore the application of trigonometric identities in integration
  • Investigate advanced integration techniques, such as integration by parts and trigonometric substitution
USEFUL FOR

Students and professionals in physics and engineering, particularly those focusing on electromagnetism and calculus, will benefit from this discussion. It is especially relevant for anyone dealing with electric field calculations and integration techniques.

Lucretius
Messages
151
Reaction score
0

Homework Statement



It's been god knows how long since I've had to use integration by substitution. I've totally forgotten it. I am trying to integrate to solve for the value of an electric field at a given point. The integral I am trying to solve is:

(2kz/4(pi)(epsilon_0)*1/(z^2+x^2)^(3/2) dx.

I know the answer is (2kz/4(pi)(epsilon_0)*(x/[z^2(z^2+x^2)^(1/2)]

Homework Equations



I'm sure I have to set u=(z^2+x^2). This makes du = 2x.

The Attempt at a Solution



I'm confused as to what to do now. The equation I'm integrating doesn't have an x in it anywhere. I don't think I can say du/2x=dx because I will have x's and u's in the integral, which is no good. However, I can't just ignore it.

Also, how did that z^2 get in there on the bottom? z is a constant in this integration and since u = z^2+x^2, the z-term drops right out. I feel terribly lost.
 
Physics news on Phys.org
That's really confusing. Why don't you just post the actual problem you are working on and how you tried to solve it?
 
Sure thing.

I'm trying to find the electric field at an arbitrary distance z above a straight line segment, where the arbitrary distance z is measured above one of the endpoints of the line segment.

Relevant Equations:

We are given that the electric field of a line charge is \frac{1}{4 \pi \epsilon_0} \int_P \frac{\lambda (R)}{r^2}dl.

Attempt At Solution.

A little element of the electric field is going to be pointed in two directions. One will be in the z-direction. The other will be in the direction parallel to the line. Using the geometry of the problem, I found that

dE=\frac{1}{4 \pi \epsilon_0}\frac{\lambda dx}{r^2}(cos(\theta) \textbf{z}+sin(\theta)\textbf{x})=\frac{\lambda}{4 \pi \epsilon_0}\frac{\lamda dx}{r^3}(z\textbf{z}+x\textbf{x}), where the bold indicates unit vectors.

I split this up into two integrals. This is where I have to integrate by parts, and where I get stuck. I have for instance, one integral which is \frac{1}{4 \pi \epsilon_0} \int_0^L \frac{2 \lambda z}{(z^2+x^2)^{3/2}}}dx.

I set my u = (z^2+x^2) and my du is then 2xdx. I am confused because there is no x in my numerator, and I can't just say du/2x=dx because then I am going to have both x's and u's in my equation when I integrate it.
 
Lucretius said:
I split this up into two integrals. This is where I have to integrate by parts, and where I get stuck. I have for instance, one integral which is \frac{1}{4 \pi \epsilon_0} \int_0^L \frac{2 \lambda z}{(z^2+x^2)^{3/2}}}dx.

I set my u = (z^2+x^2) and my du is then 2xdx. I am confused because there is no x in my numerator, and I can't just say du/2x=dx because then I am going to have both x's and u's in my equation when I integrate it.

Well, if u = (z^2+x^2), then 2x=2\sqrt{u-z^2} right?...but I don't think that makes the integral any easier!

Try the substitution u=\frac{x}{\sqrt{x^2+z^2}} instead :wink:
 
gabbagabbahey said:
Well, if u = (z^2+x^2), then 2x=2\sqrt{u-z^2} right?...but I don't think that makes the integral any easier!

Try the substitution u=\frac{x}{\sqrt{x^2+z^2}} instead :wink:

Ah, I got it, I think.

If I use the u-substitution you suggest, I get du=\frac{1}{\sqrt{x^2+z^2}}-\frac{x^2}{(x^2+z^2)^{3/2}}dx, which, getting a common denominator yields:

\frac{z^2}{(x^2+z^2)^{3/2}}.

So \frac{du}{z^2}=\frac{dx}{(x^2+z^2}dx

My integral is then just \frac{\lambda z}{4 \pi \epsilon_0}\int_a^b \frac{du}{z^2} which, after re-substituting for u back into x's, and plugging in the bounds 0 and L, I get

\frac{1}{4 \pi \epsilon_0} \frac{\lambda z L}{z^2(z^2+x^2)^{3/2}}.

Thanks, though I still wonder how I would have thought of that particular u-substitution on my own!
 

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
7K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K