Integration Help for \int 1/sqrt(a^2 + x^2)

  • Thread starter Thread starter holezch
  • Start date Start date
  • Tags Tags
    Integration
holezch
Messages
251
Reaction score
0

Homework Statement




\int \frac{1}{\sqrt{a^{2} + x^{2}}}

Homework Equations


The Attempt at a Solution



I got:\int \frac{1}{\sqrt{a^{2} + x^{2}}} = \sqrt{c} \ast \int \frac{1}{\sqrt{c \ast{x^{2}} + 1}} \frac{1}{a^{2}} = c

NEVERMIND! I got it: I couldn't remember the integral of arcsin..
so it's \frac{1}{a} = cc \ast \int \frac{1}{\sqrt{c \ast{x^{2}} + 1}}<br /> <br /> = c \ast arcsin(cx) /c
 
Last edited:
Physics news on Phys.org
holezch said:

Homework Statement




\int \frac{1}{\sqrt{a^{2} + x^{2}}}


Homework Equations





The Attempt at a Solution



I got:


\int \frac{1}{\sqrt{a^{2} + x^{2}}} = \sqrt{c} \ast \int \frac{1}{\sqrt{c \ast{x^{2}} + 1}}


\frac{1}{a^{2}} = c

NEVERMIND! I got it: I couldn't remember the integral of arcsin..
so it's


\frac{1}{a} = c


c \ast \int \frac{1}{\sqrt{c \ast{x^{2}} + 1}}<br /> <br /> = c \ast arcsin(cx) /c


This is not an arcsine integral. :redface:
Try x=a \,\ tan(\theta).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top