An integral is a very, very close approximation to a sum. Read gopher_p's link above, and you'll see that an integral is really a way of approximating the area under a complex curve by summing the areas of appropriately drawn rectangles under the curve. As we make the rectangles thinner and thinner (i.e., ##\Delta x \to 0##), then the approximation is more and more accurate because we can draw more rectangles and position them more appropriately. The process I'm talking about is called a "Riemann Sum", which is where the integral comes from. The "curly bar" you're referring to is actually made to look like an elongated "S", as if to stand for "sum".
More succinctly,
##S = \lim_{\Delta x_i \to 0} \sum_{i = 1}^{n} f(x_i) \Delta x_i##, which is called the Riemann integral over an interval ##[a, b]## if the limit exists.
Basically, what it says is if we let ##\Delta x_i##, the "base" of the rectangle, get smaller and closer to zero while letting the "height" of the rectangle, ##f(x_i)##, the function value, stay the same, then our sum gets more and more accurate.