- #1
stripes
- 265
- 0
Homework Statement
find
[tex]\int\frac{x^{2}-2x-1}{(x-1)^{2}(x^{2}+1)}dx[/tex]
Homework Equations
None
The Attempt at a Solution
[tex]\frac{x^{2}-2x-1}{(x-1)^{2}(x^{2}+1)} = \frac{A}{x-1} + \frac{B}{(x-1)^{2}} + \frac{Cx + D}{x^{2}+1}[/tex]
[tex]x^{2}-2x-1 = A(x-1)(x^{2}+1) + B(x^{2}+1) + (Cx + D)(x-1)^{2}[/tex]
[tex]x^{2}-2x-1 = Ax^{3}-Ax^{2}+Ax-A+Bx^{2}+B+Cx^{3}-2Cx^{2}+Cx+Dx^{2}-2Dx+D[/tex]
[tex]x^{2}-2x-1 = x^{3}(A+B+C) + x^{2}(-A+B-2C+D) + x(A+C-2D) - A + B +D[/tex]
so A+B+C = 0, -A+B-2C+D = 1, A+C-2D=-2 and -A+B+D=-1
solving for coefficients, we get
A = 5/3
B = -2/3
C = -1
D = 4/3
so [tex]\frac{x^{2}-2x-1}{(x-1)^{2}(x^{2}+1)} = \frac{5/3}{x-1} - \frac{2/3}{(x-1)^{2}} - \frac{x-(4/3)}{x^{2}+1}[/tex]
but apparently, the last statement is not correct. Did I break down the rational function incorrectly?
Thank you all in advance for your help!