Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Integration of Fractions

  1. Aug 13, 2012 #1
    What is the procedure to integrate this kind of a fraction, i am guessing some trigonometric
    identity will apply but i am not quite sure how


    [1/(a-bx^2)] dx

    can someone provide me a link which would help me learn about this kind of integration.

    Any help is Appreciated
     
  2. jcsd
  3. Aug 13, 2012 #2


    Google "partial fractions integration". In your case,
    $$\frac{1}{a-bx^2}=\frac{1}{(\sqrt a-\sqrt bx)(\sqrt a+\sqrt bx)}$$
    iff [itex]\,a,b\geq 0\,[/itex]

    DonAntonio
     
  4. Aug 13, 2012 #3

    mathman

    User Avatar
    Science Advisor
    Gold Member

    The above works as long as a and b have the same sign - if both are negative, replace by minus absolute value. If they are of opposite sign, then you end up with something involving an arctan.
     
  5. Aug 13, 2012 #4
    Can't you just pull out a [itex]{b}[/itex], giving [itex]\frac{1}{{b}(\frac{a}{{b}}-x^{2})}[/itex]

    Then use a simple inverse sin formula?
     
  6. Aug 14, 2012 #5
    You can, but that does not mean you have to. It depends on what solution is being asked from you, because for example you are asked to solve the problem with partial fractions and you try a sine substitution, you will have to break up your answer into two natural logarithms later on. For definite integrals though, this often is not a problem.
     
  7. Aug 14, 2012 #6


    Inverse sine formula? For that one needs [itex]\,(\sqrt{1-x^2})^{-1}\,[/itex] and we have no square roots here.

    DonAntonio
     
  8. Aug 14, 2012 #7
    DonAntonio, it is still applicable. Let [itex]\sin(t)=x[/itex]. Then we have that [itex]\displaystyle \int \frac{dt}{\cos(t)}=\int \sec(t)dt[/itex] which has a closed-form solution.
     
  9. Aug 14, 2012 #8
    Yeah, you need a square root for inverse sin, I knew that. :redface:
    But still, just do a trig sub.
     
  10. Aug 14, 2012 #9

    Yes...so? I was referring to other poster's idea of using something about the inverse sine, or [itex]\,\arcsin\,[/itex] , which I

    can't see how it can appear here more or less "naturally". Of course, one can alwasy make up substitutions as to make

    almost any function pop up, but this is not what I meant.

    DonAntonio
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Integration of Fractions
  1. Integrating a fraction (Replies: 12)

Loading...