Integration Problem 1 Solution: Calculating ∫(√x + 1/√x)^2 dx from 4 to 9

  • Thread starter Thread starter PhizKid
  • Start date Start date
  • Tags Tags
    Integration
PhizKid
Messages
477
Reaction score
2

Homework Statement


\int_{4}^{9} (\sqrt{x} + \frac{1}{\sqrt{x}})^{2} \textrm{ } dx


Homework Equations





The Attempt at a Solution


\int_{4}^{9} (\sqrt{x} + \frac{1}{\sqrt{x}})^{2} \textrm{ } dx \\\\<br /> \int_{4}^{9} (x + 1 + 1 + \frac{1}{x}) \textrm{ } dx \\\\<br /> \frac{x^2}{2} + 2x + ln(x) | \textrm{4 to 9} \\\\<br /> (27 + ln(9)) - (\frac{88}{9} + ln(4)) \\\\<br /> \frac{155}{9} + ln(\frac{9}{4})

The solution says this is incorrect...can anyone correct me where I integrated wrong?
 
Physics news on Phys.org
I think you just goofed up when plugging in 9 and 4. Everything up until that point is correct.
 
PhizKid said:

Homework Statement


\int_{4}^{9} (\sqrt{x} + \frac{1}{\sqrt{x}})^{2} \textrm{ } dx


Homework Equations





The Attempt at a Solution


\int_{4}^{9} (\sqrt{x} + \frac{1}{\sqrt{x}})^{2} \textrm{ } dx \\\\<br /> \int_{4}^{9} (x + 1 + 1 + \frac{1}{x}) \textrm{ } dx \\\\<br /> \frac{x^2}{2} + 2x + ln(x) | \textrm{4 to 9} \\\\<br /> (27 + ln(9)) - (\frac{88}{9} + ln(4)) \\\\<br /> \frac{155}{9} + ln(\frac{9}{4})

The solution says this is incorrect...can anyone correct me where I integrated wrong?
Your integration was fine. You have a mistake when you evaluate your antiderivative, when x = 4. If x = 4, x2/2 = 16/2, not 88/9.
 
phizkid said:

Homework Statement


\int_{4}^{9} (\sqrt{x} + \frac{1}{\sqrt{x}})^{2} \textrm{ } dx

Homework Equations


The Attempt at a Solution


\int_{4}^{9} (\sqrt{x} + \frac{1}{\sqrt{x}})^{2} \textrm{ } dx \\\\<br /> \int_{4}^{9} (x + 1 + 1 + \frac{1}{x}) \textrm{ } dx \\\\<br /> \frac{x^2}{2} + 2x + ln(x) | \textrm{4 to 9} \\\\<br /> (27 + ln(9)) - (\frac{88}{9} + ln(4)) \\\\<br /> \frac{155}{9} + ln(\frac{9}{4})

the solution says this is incorrect...can anyone correct me where i integrated wrong?

##9^2 ≠ 27##

In specific : x^2/2 = 81/2
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top