PhysicsinCalifornia
- 58
- 0
\int \frac{1}{x\sqrt{4x + 1}}dx
I let u= \sqrt{4x+1}, u^2 = 4x+1
So \frac{1}{2}u du = dx
\int \frac{\frac{1}{2}u}{(\frac{u^2-1}{4})*((\sqrt{u})^2)}du
\int \frac{2u}{(u^2 - 1)*(u)} du
\int \frac{2}{u^2 - 1} du
2\int \frac{1}{u^2 -1}du
Can anyone help me anti-differentiate what the integrand is?
I let u= \sqrt{4x+1}, u^2 = 4x+1
So \frac{1}{2}u du = dx
\int \frac{\frac{1}{2}u}{(\frac{u^2-1}{4})*((\sqrt{u})^2)}du
\int \frac{2u}{(u^2 - 1)*(u)} du
\int \frac{2}{u^2 - 1} du
2\int \frac{1}{u^2 -1}du
Can anyone help me anti-differentiate what the integrand is?
Last edited: