Intersection of Hyperboloid & 2-Plane=Ellipse

adsquestion
Messages
34
Reaction score
0
I want to try and see the intersection between the hyperboloid and the 2-plane giving an ellipse. So far I have the following:

I'm going to work with ##AdS_3## for simplicity which is the hyperboloid given by the surface (see eqn 10 in above notes for reason) ##X_0^2-X_1^2-X_2^2+X_3^2=L^2##

If I take the eqn of the 2-plane to be (see Figure 11) ##X_0+X_2=Le^{w/L}## then ##X_0^2+X_2^2=L^2e^{2w/L}-2X_0X_2##

Substituting for the intersection gives ##(X_0+X_2)^2-X_1^2-2X_2^2+X_3^2=L^2 \quad \Rightarrow L^2 e^{2w/L} -2X_0X_2-X_1^2-2X_2^2+X_3^2=L^2## which I don't recognise as anything to do with an ellipse?

EDIT: solved :)
 
Last edited:
Physics news on Phys.org
Please show us what you did.
Also post the figures you reference.

This is common courtesy towards people that find this through google or forum search.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...

Similar threads

Replies
11
Views
2K
Replies
6
Views
2K
2
Replies
61
Views
12K
2
Replies
61
Views
11K
Replies
125
Views
19K
Back
Top