Intervals of increasing/decreasing Using Inequalities

Cosmophile
Messages
111
Reaction score
2

Homework Statement


[/B]
Identify the open intervals on which the function ##f(x) = 12x-x^3## is increasing or decreasing

Homework Equations


[/B]
##f(x)=12x-x^3##

##\frac {df}{dx} = 12-3x^2 = -3(x^2 - 4)##

The Attempt at a Solution


[/B]
I'm reading out of two textbooks. One is a Larson/Edwards text, which says to use test values upon intervals and whatnot. However, my other textbook (Serge Lang), as well as the MIT 18.01 lecture videos I am watching, don't use this method and instead utilize inequalities. I prefer this method, but am having a difficult time exercising it, as my high school did very, very little with inequalities, so my experience is minimal. Here is what I've got:

##f## is increasing when ##f'(x) > 0##

##-3(x^2 - 4) > 0##

##(x^2 - 4) < 0##

##x^2 < 4##

##x < \pm 2##
##x < 2##, ##x< -2## = ##-x > 2##

Here is where I get stuck. I'm not sure how to make sense of this answer. I know that ##f## is increasing on the interval ##(-2, 2)## and decreasing on ##(-\infty, -2)(2, \infty)##, but don't know how to translate my answer to say this. I'm sure I'm either making a simple mistake or am just missing a bit of know-how regarding these types of problems. Any help is greatly appreciated; thanks in advance!
 
Physics news on Phys.org
You've made a mistake, think again about what you wrote after x^2 < 4
 
When you go from x^2 &lt; 4 to x &lt; \pm 2 you introduce a problem: notice that -5 &lt; -2 is true but (-5)^2 &lt; 4 is not.

Start with
<br /> x^2 - 4 &lt; 0 \Rightarrow (x-2)(x+2) &lt; 0 <br />

and look at the different cases to solve the inequality.
 
statdad said:
When you go from x^2 &lt; 4 to x &lt; \pm 2 you introduce a problem: notice that -5 &lt; -2 is true but (-5)^2 &lt; 4 is not.

Start with
<br /> x^2 - 4 &lt; 0 \Rightarrow (x-2)(x+2) &lt; 0<br />

and look at the different cases to solve the inequality.

I had noticed this, and immediately thought about absolute values, which is when I realized I was truly lost. I appreciate the insight!
 
Cosmophile said:

Homework Statement


[/B]
Identify the open intervals on which the function ##f(x) = 12x-x^3## is increasing or decreasing

Homework Equations


[/B]
##f(x)=12x-x^3##

##\frac {df}{dx} = 12-3x^2 = -3(x^2 - 4)##

The Attempt at a Solution


[/B]
I'm reading out of two textbooks. One is a Larson/Edwards text, which says to use test values upon intervals and whatnot. However, my other textbook (Serge Lang), as well as the MIT 18.01 lecture videos I am watching, don't use this method and instead utilize inequalities. I prefer this method, but am having a difficult time exercising it, as my high school did very, very little with inequalities, so my experience is minimal. Here is what I've got:

##f## is increasing when ##f'(x) > 0##

##-3(x^2 - 4) > 0##

##(x^2 - 4) < 0##

##x^2 < 4##

##x < \pm 2##
##x < 2##, ##x< -2## = ##-x > 2##

Here is where I get stuck. I'm not sure how to make sense of this answer. I know that ##f## is increasing on the interval ##(-2, 2)## and decreasing on ##(-\infty, -2)(2, \infty)##, but don't know how to translate my answer to say this. I'm sure I'm either making a simple mistake or am just missing a bit of know-how regarding these types of problems. Any help is greatly appreciated; thanks in advance!

Think about the graph ##y = x^2##. For what x-region do you have ##y < 4##?
 
statdad said:
When you go from x^2 &lt; 4 to x &lt; \pm 2 you introduce a problem ...
Cosmophile said:
I had noticed this, and immediately thought about absolute values, which is when I realized I was truly lost. I appreciate the insight!
However, you can work with ##\displaystyle\ x^2 < 4 \ ## more directly.

Take the square root of both sides. (Yes, that preserves the inequality.)

##\displaystyle\ \sqrt{x^2\ } < \sqrt{4\ } \ ##​

Strictly speaking, ##\displaystyle\ \sqrt{x^2\ } = \left|x\right| \ ##, so you have the following inequality.

##\displaystyle\ \left|x\right|<2 \ ##​
 
I ended up doing this:

##x^2 < 4##

## |x| < 2 ##, giving me ##-2 < x < 2##

I'm currently working on:​

##f(x) = \cos\frac {x}{2}, 0 < x < 2\pi##​
So far, I have:

##\frac {df}{dx} = -\frac{1}{2} \sin\frac {x}{2}##

##-\frac{1}{2} \sin\frac {x}{2} > 0##

## \sin\frac {x}{2} > 0##​

## \arcsin\frac {x}{2} > \arcsin 0##​

##\frac {x}{2} > 0##

##x > 0##

Again, I'm confused. I know that, on the interval, f(x) is never increasing.
 
Cosmophile said:
I ended up doing this:

##x^2 < 4##

## |x| < 2 ##, giving me ##-2 < x < 2##​

I'm currently working on:​
##f(x) = \cos\frac {x}{2}, 0 < x < 2\pi##
So far, I have:

##\frac {df}{dx} = -\frac{1}{2} \sin\frac {x}{2}##

##-\frac{1}{2} \sin\frac {x}{2} > 0##

## \sin\frac {x}{2} > 0##

## \arcsin\frac {x}{2} > \arcsin 0##​

##\frac {x}{2} > 0##

##x > 0##

Again, I'm confused. I know that, on the interval, f(x) is never increasing.
Start a new thread for a new problem, unless what you're adding is just a very closely related extension of the original problem.

In this case, best to start a new thread , and state the problem completely in the body of the opening post - no matter how descriptive the title of the thread.
 
Cosmophile said:
I ended up doing this:

##x^2 < 4##

## |x| < 2 ##, giving me ##-2 < x < 2##​

I'm currently working on:​
##f(x) = \cos\frac {x}{2}, 0 < x < 2\pi##
So far, I have:

##\frac {df}{dx} = -\frac{1}{2} \sin\frac {x}{2}##

********************
Stop! The inequality ##-\sin(u) > 0## is the same as ##+\sin(u) < 0##. Changing the sign on both sides of an inequality reverses the direction of the inequality. This is not hard---just draw a picture.

********************

##-\frac{1}{2} \sin\frac {x}{2} > 0##

## \sin\frac {x}{2} > 0##

## \arcsin\frac {x}{2} > \arcsin 0##​

##\frac {x}{2} > 0##

##x > 0##

Again, I'm confused. I know that, on the interval, f(x) is never increasing.
 
Last edited:
  • Like
Likes Cosmophile
  • #10
Cosmophile said:
I ended up doing this:

##x^2 < 4##

## |x| < 2 ##, giving me ##-2 < x < 2##​

I'm currently working on:​
##f(x) = \cos\frac {x}{2}, 0 < x < 2\pi##
So far, I have:

##\frac {df}{dx} = -\frac{1}{2} \sin\frac {x}{2}##

##-\frac{1}{2} \sin\frac {x}{2} > 0##

## \sin\frac {x}{2} > 0##

## \arcsin\frac {x}{2} > \arcsin 0##​

##\frac {x}{2} > 0##

##x > 0##

Again, I'm confused. I know that, on the interval, f(x) is never increasing.

As SammyS said, please start a new thread for new problems. It keeps thread discussions from getting mixed up between different problems.
 
Back
Top