Introductory physics: Time for a ball thrown vertically to reach maximum height

AI Thread Summary
The discussion revolves around a physics problem regarding the time it takes for a ball thrown vertically to reach maximum height. A participant calculates the maximum height using the freefall equation and arrives at a distance of 11.4 meters. However, the main focus of the problem is to determine the time in seconds, not the height in meters. There is confusion regarding the interchange of variables "x" and "d," as well as the clarity of the images shared in the forum. The conversation emphasizes the need to address the time calculation rather than the height achieved.
danielsmith123123
Messages
26
Reaction score
4
Homework Statement
A 3 kg ball is thrown vertically into the air with an initial velocity of 15 m/s. What is the time it takes for the ball to reach its maximum height?
Relevant Equations
Vf =vi +at
Vf^2 = Vi^2 +2ax
x = Vf t - (1/2)(a)(t^2)
x = Vi t + (1/2)(a)(t^2)
Is the answer key wrong? I keep getting the same answer and it is verified with the freefall equation distance=1/2 (g)(t^2)
IMG_5721[1120].PNG
 
Last edited by a moderator:
Physics news on Phys.org
You should write the full text of the problem, not an abstract of it. Where did the value of d comes from?
 
Ok thank you, i edited the forum. I guess you can't open pictures on this website, but i calculated d with Vf^2=Vi^2 +(2)(a)(d)
0^2 = 15^2 + (2)(-9.8)d
d = 11.4m
(I realize i probably shouldn't use "x" and "d" interchangibly)
 
You found the maximum height. The problem is asking you to find the time it takes to reach that maximum height. Your answer should be a number in seconds, not meters.
 
danielsmith123123 said:
Ok thank you, i edited the forum. I guess you can't open pictures on this website, but i calculated d with Vf^2=Vi^2 +(2)(a)(d)
0^2 = 15^2 + (2)(-9.8)d
d = 11.4m
(I realize i probably shouldn't use "x" and "d" interchangibly)
You don't need the height but you got it OK. What is your problem? I cannot read the image you posted. It is not clear enough.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top