CAF123
Gold Member
- 2,918
- 87
Homework Statement
A space probe is sent from Earth to collect samples of gas from our nearest neighbour star, Proxima Centauri, which is 4.2 ly away. The probe accelerates rapidly to a speed of 0.99c, cruises at this speed until very close to the star, slingshots around the back of the star collecting the sample and then returns back to Earth. Only when close to Earth does it rapidly decelerate.
Synchronised clocks are placed on the probe and at mission control. What times do they read the moment the probe returns to Earth?
The Attempt at a Solution
Earth's clock: Relative to Earth, distance to Proxima Centauri is 4.2 ly. This means the time for the probe to reach the star is simply (4.2)/(0.99) ≈ 4.24 yrs. It is the exact same calculation on the way back so the Earth clock reads ≈ 2(4.24) = 8.48 yrs.
Probe's clock: As the ship approaches the star, since v ~ c, in a frame stationary relative to the probe ( i.e an observer standing on the probe), the distance to the star is contracted by a factor of ##\gamma##. This means ##l = l_o/\gamma = 4.2/\gamma,## where ##\gamma = 1/\sqrt{1-(0.99)^2} ≈ 7.1 ##. So the distance to the star from the ship's perspective is just ≈ 4.2/7.1 = 0.6 ly. Is this good? Am I right in saying I can't get the time on the probe's clock by using this method? - the approach I should have taken was one involving time dilation? So on the ship, time is shorter by a factor of γ. The time to the star from Earth is ~ 4.24 yrs => time on ship ~ 4.24/7.1 = 0.6 yrs. Same on the way back so the probe clock reads 2(0.6) ~ 1.2 yrs. Is it okay?
I have some questions: Isn't time dilation and length contraction supposed to be complementary effects, that is if time dilation occurs in one frame then length contraction occurs in some other frame? Here, I have the ship experiencing both length contraction and time dilation?
Many thanks.