yuiop said:
would someone be kind enough to calculate ##e^{\varphi}##, ##\omega_{3,1}##, ##h^{11}## and ##h^{33}## from the canonical form of the Kerr metric?
You can read them off from equation 14, which is the Kerr metric in canonical form for arbitrary ##\omega##. I get
$$
e^{2 \psi} = 1 - \omega^2 \left( a^2 + r^2 \right) - \frac{2M}{r} \left( 1 - a \omega \right)^2
$$
(the above is actually given as equation 15)
$$
h^{11} = h^{rr} = 1 - \frac{2M}{r} + \frac{a^2}{r^2}
$$
$$
h^{33} = h^{\phi \phi} = \frac{r^2 - 2 m r + a^2}{1 - \omega^2 \left( a^2 + r^2 \right) - \left( 2 M / r \right) \left( 1 - a \omega \right)^2}
$$
$$
w_3 = w_{\phi} = \frac{\omega \left( a^2 + r^2 \right) - \left( 2 a M / r \right) \left( 1 - a \omega \right)}{1 - \omega^2 \left( a^2 + r^2 \right) - \left( 2 M / r \right) \left( 1 - a \omega \right)^2}
$$
Then we need to differentiate the last equation with respect to ##r## to get
$$
w_{3, 1} = w_{\phi , r} = \frac{2 \omega r + \left( 2 a M / r^2 \right) \left( 1 - a \omega \right)}{1 - \omega^2 \left( a^2 + r^2 \right) - \left( 2 M / r \right) \left( 1 - a \omega \right)^2} - \frac{\omega \left( a^2 + r^2 \right) - \left( 2 a M / r \right) \left( 1 - a \omega \right)}{\left[ 1 - \omega^2 \left( a^2 + r^2 \right) - \left( 2 M / r \right) \left( 1 - a \omega \right)^2 \right]^2} \left[ - 2 \omega^2 r + \frac{2M}{r^2} \left( 1 - a \omega \right)^2 \right]
$$
If I've done the algebra right, this simplifies to
$$
w_{3, 1} = w_{\phi , r} = \frac{2 \omega r - 2 \omega M \left[ 2 + \left( a^2 + r^2 \right) / r^2 \right] \left( 1 - a \omega \right) \left( 1 - 2 a \omega \right) + \left( 2 a M / r^2 \right) \left( 1 - a \omega \right)}{\left[ 1 - \omega^2 \left( a^2 + r^2 \right) - \left( 2 M / r \right) \left( 1 - a \omega \right)^2 \right]^2}
$$
which doesn't look very enlightening, so it's quite possible that I've made an algebra error.