sam.green
- 6
- 0
Hello,
I am working through Signals and Systems Demystified, but I am at an impasse.
I would like to take the inverse Fourier transform of
<br /> H(f)=\begin{cases}<br /> -j&\text{if } f > 0\\<br /> j&\text{if } f<0\end{cases}<br />
So
<br /> h(t) = \int_{-\infty}^{0} je^{j2\pi f t}df + \int_{0}^{\infty} -je^{j2\pi ft}df <br /> = \int_{-\infty}^{0} je^{j2\pi f t}df + \int_{-\infty}^{0} je^{j2\pi f t}df <br /> = 2\int_{-\infty}^{0} je^{j2\pi f t}df <br /> = \frac{j2e^{j2\pi ft}}{j2\pi t}|_{-\infty}^{0}<br />
So
<br /> h(t) = \frac{1}{\pi t} - \lim_{f \rightarrow -\infty} \frac{e^{j2\pi ft}}{\pi t}<br />
The book says that h(t) = \frac{1}{\pi t} is the answer, but I don't understand how. Isn't \lim_{f \rightarrow -\infty} \frac{e^{j2\pi ft}}{\pi t} periodic and nonconverging?
I am working through Signals and Systems Demystified, but I am at an impasse.
I would like to take the inverse Fourier transform of
<br /> H(f)=\begin{cases}<br /> -j&\text{if } f > 0\\<br /> j&\text{if } f<0\end{cases}<br />
So
<br /> h(t) = \int_{-\infty}^{0} je^{j2\pi f t}df + \int_{0}^{\infty} -je^{j2\pi ft}df <br /> = \int_{-\infty}^{0} je^{j2\pi f t}df + \int_{-\infty}^{0} je^{j2\pi f t}df <br /> = 2\int_{-\infty}^{0} je^{j2\pi f t}df <br /> = \frac{j2e^{j2\pi ft}}{j2\pi t}|_{-\infty}^{0}<br />
So
<br /> h(t) = \frac{1}{\pi t} - \lim_{f \rightarrow -\infty} \frac{e^{j2\pi ft}}{\pi t}<br />
The book says that h(t) = \frac{1}{\pi t} is the answer, but I don't understand how. Isn't \lim_{f \rightarrow -\infty} \frac{e^{j2\pi ft}}{\pi t} periodic and nonconverging?