I Inverse hyperbolic function expressed as inverse trigonometry function

Happiness
Messages
686
Reaction score
30
Consider ##y=\cos{-x}=\cos x=\cosh ix##.

Thus, ##\pm x=\cos^{-1}y## and ##ix=\cosh^{-1}y##.

So ##\cosh^{-1}y=\pm i\cos^{-1}y##.

Renaming the variable ##y##, we have ##\cosh^{-1}x=\pm i\cos^{-1}x##.

Next, we evaluate the derivative of ##\cosh^{-1}x## by converting it to ##\cos^{-1}x## using ##\cosh^{-1}x=i\cos^{-1}x##.

##\frac{d}{dx}\cosh^{-1}x=\frac{d}{dx}i\cos^{-1}x##
##=i\frac{-1}{\sqrt{1-x^2}}## --- (*)
##=\frac{-i}{i\sqrt{x^2-1}}## where I've used the rule ##\sqrt{-c}=i\sqrt{c}## for ##c>0##, since ##x>1##.
##=\frac{-1}{\sqrt{x^2-1}}##, which differs from the correct answer by a negative sign.

This means we would get the correct answer had we used ##\cosh^{-1}x=-i\cos^{-1}x##.

My question is how do we know when to add the negative sign.

I realized that step (*) is wrong because the formula for the derivative of ##\cos^{-1}## is true only for ##-1<x<1##. However, since we get the right answer in the end, it seems like there is a reason why we could still use the formula for values of ##x## outside ##-1<x<1##, and an explanation when we should use ##\cosh^{-1}x=-i\cos^{-1}x## instead of ##\cosh^{-1}x=i\cos^{-1}x##.
 
Mathematics news on Phys.org
Hi Happiness:

I am not sure I understand what you are asking, but it seems to me that the first equation omitted
cosh ix = cosh -ix.​
That is, both cos and cosh are symmetrical functions. Therefore when you take the inverse, you get two possible correct answers:
+ and -. This the same as taking the square root of a positive value and getting both a positive and negative result.

Hope this helps.

Regards,
Buzz
 
Hi Buzz

Thanks for replying.

I am asking why is ##\cosh^{-1}x=-i\cos^{-1}x##? And why isn't ##\cosh^{-1}x=+i\cos^{-1}x##? Why is the positive result rejected?
 
Happiness said:
Why is the positive result rejected?
Hi Happiness:

Can you post a link to where you found that the positive result is rejected?

Regards,
Buzz
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top