I Inverse hyperbolic function expressed as inverse trigonometry function

AI Thread Summary
The discussion revolves around the relationship between inverse hyperbolic functions and inverse trigonometric functions, specifically examining the equation ##\cosh^{-1}x=\pm i\cos^{-1}x##. The participants explore the implications of using either the positive or negative sign in this equation, noting that the derivative of ##\cosh^{-1}x## derived from ##\cos^{-1}x## yields a discrepancy when the wrong sign is applied. A key point raised is the limitation of the derivative formula for ##\cos^{-1}x##, which is valid only for values within the range of -1 to 1. The conversation highlights the necessity of understanding when to apply the negative sign in the context of these functions, with references made to graphical representations for clarification. The discussion concludes with an emphasis on the importance of selecting the correct sign to avoid incorrect results.
Happiness
Messages
686
Reaction score
30
Consider ##y=\cos{-x}=\cos x=\cosh ix##.

Thus, ##\pm x=\cos^{-1}y## and ##ix=\cosh^{-1}y##.

So ##\cosh^{-1}y=\pm i\cos^{-1}y##.

Renaming the variable ##y##, we have ##\cosh^{-1}x=\pm i\cos^{-1}x##.

Next, we evaluate the derivative of ##\cosh^{-1}x## by converting it to ##\cos^{-1}x## using ##\cosh^{-1}x=i\cos^{-1}x##.

##\frac{d}{dx}\cosh^{-1}x=\frac{d}{dx}i\cos^{-1}x##
##=i\frac{-1}{\sqrt{1-x^2}}## --- (*)
##=\frac{-i}{i\sqrt{x^2-1}}## where I've used the rule ##\sqrt{-c}=i\sqrt{c}## for ##c>0##, since ##x>1##.
##=\frac{-1}{\sqrt{x^2-1}}##, which differs from the correct answer by a negative sign.

This means we would get the correct answer had we used ##\cosh^{-1}x=-i\cos^{-1}x##.

My question is how do we know when to add the negative sign.

I realized that step (*) is wrong because the formula for the derivative of ##\cos^{-1}## is true only for ##-1<x<1##. However, since we get the right answer in the end, it seems like there is a reason why we could still use the formula for values of ##x## outside ##-1<x<1##, and an explanation when we should use ##\cosh^{-1}x=-i\cos^{-1}x## instead of ##\cosh^{-1}x=i\cos^{-1}x##.
 
Mathematics news on Phys.org
Hi Happiness:

I am not sure I understand what you are asking, but it seems to me that the first equation omitted
cosh ix = cosh -ix.​
That is, both cos and cosh are symmetrical functions. Therefore when you take the inverse, you get two possible correct answers:
+ and -. This the same as taking the square root of a positive value and getting both a positive and negative result.

Hope this helps.

Regards,
Buzz
 
Hi Buzz

Thanks for replying.

I am asking why is ##\cosh^{-1}x=-i\cos^{-1}x##? And why isn't ##\cosh^{-1}x=+i\cos^{-1}x##? Why is the positive result rejected?
 
Happiness said:
Why is the positive result rejected?
Hi Happiness:

Can you post a link to where you found that the positive result is rejected?

Regards,
Buzz
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top