Inverse Laplace of a Mass-Spring System

AI Thread Summary
The discussion focuses on finding the inverse Laplace transform of a mass-spring system given a sinusoidal input. The transfer function is manipulated to express X_1 in terms of the Laplace variable s, leading to an equation involving omega and the system parameters. A participant points out a potential error in the equation and suggests using partial fraction decomposition to simplify the expression further. The next step involves determining the constants A, B, C, and D for the decomposition. This approach will facilitate the calculation of x(t) from the inverse Laplace transform.
happycamper
Messages
5
Reaction score
0

Homework Statement



Given a transfer function in the Laplace Domain

Detemine an expression for x(t), given f(t) is a sinusodial input with frequency omega = root(k2/m2) and amplitude of 1 N (initial conditions equal 0)

Homework Equations


[URL]http://latex.codecogs.com/gif.latex?X_1/F=(m_2&space;s^2+k_2)/(m_1&space;m_2&space;s^4+k_2&space;(m_1+m_2)s^2&space;)[/URL]

Inverse laplace 1/s^2 = t.u(t)
Inverse laplace (omega/s^2+omega^2) = sin(omega.t) . u(t)

The Attempt at a Solution



I divided the transfer function by m2 to obtain omega^2. I then brought the F over to the LHS as a sin function in the laplace domain (omega/s^2+omega^2). I have obtained the following equation

[URL]http://latex.codecogs.com/gif.latex?X_1=(1/s^2)&space;.w/((s^2&space;m_1+w^2&space;((m_1+m_2)/m_2&space;))[/URL]What is the next step? I am given inverse laplace transforms for 1/s^2 and omega/s^2+omega^2
 
Last edited by a moderator:
Physics news on Phys.org
happycamper said:
[URL]http://latex.codecogs.com/gif.latex?X_1/F=(m_2&space;s^2+k_2)/(m_1&space;m_2&space;s^4+k_2&space;(m_1+m_2)s^2&space;)[/URL]

Inverse laplace 1/s^2 = t.u(t)
Inverse laplace (omega/s^2+omega^2) = sin(omega.t) . u(t)

The Attempt at a Solution



I divided the transfer function by m2 to obtain omega^2. I then brought the F over to the LHS as a sin function in the laplace domain (omega/s^2+omega^2). I have obtained the following equation

[URL]http://latex.codecogs.com/gif.latex?X_1=(1/s^2)&space;.w/((s^2&space;m_1+w^2&space;((m_1+m_2)/m_2&space;))[/URL]What is the next step? I am given inverse laplace transforms for 1/s^2 and omega/s^2+omega^2

First, I think you have a small error in your equation. I get

X_1(s)=\frac{\omega}{s^2[m_1s^2+(m_1+m_2)\omega^2]}

since m_1m_2s^4+(m_1+m_2)k_2s^2=m_2s^2[m_1s^2+(m_1+m_2)\omega^2]

Second, use partial fraction decomposition. Say\frac{\omega}{s^2[m_1s^2+(m_1+m_2)\omega^2]}=\frac{A}{s}+\frac{B}{s^2}+\frac{Cs+D}{m_1s^2+(m_1+m_2)\omega^2}

and find the constants A, B, C and D.
 
Last edited by a moderator:
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top