Inverse laplace transofrm of natural logarithm

exidez
Messages
41
Reaction score
0

Homework Statement



the inverse laplace transform of ln\frac{s+2}{s-5} using the inverse Laplace transform of the derivative

Homework Equations

L^{-1}{\frac{d^{n}}{ds^{n}}F(S)} = (-1)^{n}t^{n}f(t)

The Attempt at a Solution



the integral of ln\frac{s+2}{s-5} I worked to be (s+2)ln(s+2)-(s+2) -(s-5)ln(s-5)+(s-5). So if this is F(S) then i still have no idea how to inverse it using the inverse Laplace transform of the derivative

somehow i think I am going down the wrong road... ?
 
Last edited:
Physics news on Phys.org
ok, i think i got it!

i go the other way and make n = -1

I have never seen this but just to clear this up: if \frac{d}{ds}}F(S) is the derivative of F(S) then \frac{d^{-1}}{ds^{-1}}F(S) is the same as the integration of F(S) right?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top