Inverse of This Laplace Function

capo12
Messages
1
Reaction score
0
H(s) = 1/(s^2+9)^2

My attempt to the solution is not that all impressive. I know i have to use convolution to do it, so far i got this

H(s)= (1/(s^2+9).(1/(s^2+9)^2
 
Physics news on Phys.org
<br /> \frac{1}{(s^2+9)^2}=\frac{1}{s^2+3^2}\frac{1}{s^2+3^2}

Can you make that a convolution of two inverse transforms you already know?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top