Inverse tangents in cyclic order

AI Thread Summary
The discussion revolves around solving the equation for the sum of inverse tangents, specifically $$\theta= tan^{-1}(\frac{a(a+b+c)}{bc})+tan^{-1}(\frac{b(a+b+c)}{ac})+tan^{-1}(\frac{c(a+b+c)}{ab})$$ and finding $$tan\theta$$. Initial attempts involved using triangle properties, but the solution was found to be zero after applying the formula for the sum of arctangents, despite being messy. A suggestion was made that the terms should actually include square roots, which could simplify the problem significantly. Using the corrected terms and the tangent addition formula, the problem can be solved more easily. The conclusion emphasizes the importance of verifying the problem's setup for an efficient solution.
cr7einstein
Messages
87
Reaction score
2

Homework Statement



The problem- if

$$\theta= tan^{-1}(\frac{a(a+b+c)}{bc})+tan^{-1}(\frac{b(a+b+c)}{ac})+tan^{-1}(\frac{c(a+b+c)}{ab})$$
, then find $$tan\theta$$

Homework Equations

The Attempt at a Solution


I tried to use these as sides of a triangle and use their properties, but other than that I am clueless. I cannot think of a substitution either. The answer happens to be zero. Any help is appreciated. Thanks in advance!
 
Physics news on Phys.org
Okay, I have it. Apparently, there is no 'elegant' way to do this. Just use the equation for $$arctan x + arctan y + arctan z$$, and after some really messy calculation, you get the answer as zero. If there is a different, neat answer, please let me know.
 
i think your question is wrong it should be:-
in all the terms it should be sqrt(x) , sqrt(y), sqrt(z) inside of arctan ; where x,y,z are a(a+b+c)/bc , b(a+b+c)/ac , c(a+b+c)/ab ; as i have seen a similar question in my textbook.

if you consider it like this and take tan both sides and use tan(E+F+G)=(S1-S3)/(1-S2), it is easily solved in just few steps.
 
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Essentially I just have this problem that I'm stuck on, on a sheet about complex numbers: Show that, for ##|r|<1,## $$1+r\cos(x)+r^2\cos(2x)+r^3\cos(3x)...=\frac{1-r\cos(x)}{1-2r\cos(x)+r^2}$$ My first thought was to express it as a geometric series, where the real part of the sum of the series would be the series you see above: $$1+re^{ix}+r^2e^{2ix}+r^3e^{3ix}...$$ The sum of this series is just: $$\frac{(re^{ix})^n-1}{re^{ix} - 1}$$ I'm having some trouble trying to figure out what to...

Similar threads

Back
Top