# Invertible Matrix Theorem

General question regarding the Inv. Matrix Thm:

One part of the theorem states that for an nxn invertible matrix, then there exists at least one solution for each b in Ax=b. Why wouldn't it be "there exists at MOST one solution for each b" since every column/row has a pivot. How would there exist more than one solution for each b if the columns span R_n?

Related Calculus and Beyond Homework Help News on Phys.org
Defennder
Homework Helper
Are you sure that's what the theorem says? My book doesn't say "at least one". It says "exactly one". Here's what Wikipedia says:

[PLAIN]http://en.wikipedia.org/wiki/Invertible_matrix_theorem said:
Let[/PLAIN] [Broken] A be a square n by n matrix over a field K (for example the field R of real numbers). Then the following statements are equivalent:

A is invertible.
A is row-equivalent to the n-by-n identity matrix In.
A is column-equivalent to the n-by-n identity matrix In.
A has n pivot positions.
det A ≠ 0.
rank A = n.
The equation Ax = 0 has only the trivial solution x = 0 (i.e., Null A = {0})
The equation Ax = b has exactly one solution for each b in Rn.
The columns of A are linearly independent.
The columns of A span Rn (i.e. Col A = Rn).
The columns of A form a basis of Rn.
The linear transformation mapping x to Ax is a bijection from Rn to Rn.
There is an n by n matrix B such that AB = In.
The transpose AT is an invertible matrix.
The matrix times its transpose, AT × A is an invertible matrix.
The number 0 is not an eigenvalue of A.

Last edited by a moderator:
Oh, weird. Yeah my book does say "at least one solution". Thanks for showing me the wiki entry though.

HallsofIvy
Homework Helper
Well, the statement is still true: if a matrix is invertible, then the equation Ax= b has exactly one solution so it is certainly true that there is at least one solution.

If A is not invertible then Ax= b may have no solutions or an infinite number of solutions.

You book may have some reason for emphasizing "the solution exists" right now rather than "the solution is unique"- both of which are true for A invertible.

HallsofIvy
Homework Helper
Does anyone know how to prove the following theorems:

1) Ax = b is consistent for every n x 1 matrix b

2) Ax = b has exactly one solution for every n x 1 matrix b

3) Ax = b has exactly one solution for at least one n x 1 matrix b

Pls... I need help. It's urgent!!!!