Irrational Flow yields dense orbits.

JuanYsimura
Messages
5
Reaction score
0
I have the folloring problem:

Given the following flow on the torus (θ_1)' = ω_1 and (θ_2)' = ω_2, where ω_1 /ω_2 is irrational then I am asked to show that each trajectory is DENSE. So I need to prove that Given any point p on the torus, any initial condition q, and any ε > 0, then there exists t finite such that the trajectory starting at q passes within a distance epsilon of p, that is to say find a t such that |q - p| < ε.

My problem is how can I find such a t? Can I prove this by contradiction?

Thank you very much for your help,


Juan
 
Physics news on Phys.org
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top