icantadd
- 109
- 0
Homework Statement
Show 16x^4 = 8x^3 - 16x^2 - 8x + 1 is irreducible.
Homework Equations
Eisenstein's criteria, if there is n s.t. n does not divide the leading coefficient, divides all the other coefficients, and n^2 does not divide the last coefficient then the polynomial is irreducible (over the rationals)
The Attempt at a Solution
I want to say that consider p'(x) = p(\frac{1}{2}x) = x^4 + x^3 - 4x^2 - 4x + 1 is irreducible by eisenstein if we use the standard trick of substituting x+1 -> x, then we get, x^4+5x^3+5x^2-5x-5 where eisenstein is immediate. What I don't know is that if I can then say that since p' is irreducible, then p is.