Irreducible polynomials over the reals

  • Thread starter Thread starter R.P.F.
  • Start date Start date
  • Tags Tags
    Polynomials
R.P.F.
Messages
210
Reaction score
0

Homework Statement



How to prove that the only irreducible polys over the reals are the linear ones and the quadratic ones no real roots?

What about the ones with higher degree? I feel that I'm missing something that's really obvious.

Homework Equations





The Attempt at a Solution

 
Physics news on Phys.org
I wouldn't immediately say that it's obvious, but it's certainly something that you can prove:

Let P(X) be a real polynomial. The fundamental theorem of algebra states that there exists complex number a1,...an such that P(X)=(X-a1)...(X-an). Thus we have factorized the polynomial P over the field C. However, we must factorize it over R.

For this: notice the following fact (try to prove this!): if z is a complex solution of P(X) (thus is P(z)=0), then the complex conjugate \overline{z} is a solution of P(X).

Thus, in our factorization P(X)=(X-a1)...(X-an), if ai is non-real, then one of the a1,...,an must be \overline{a_i}. And if we multiply (X-a_i)(X-\overline{a_i}), then we get a REAL quadratic polynomial!
Thus P(X) can always be written as a product of linear terms and quadratic terms. This implies that the only possible irreducible polynomials are linear or quadratic.
 
micromass said:
I wouldn't immediately say that it's obvious, but it's certainly something that you can prove:

Let P(X) be a real polynomial. The fundamental theorem of algebra states that there exists complex number a1,...an such that P(X)=(X-a1)...(X-an). Thus we have factorized the polynomial P over the field C. However, we must factorize it over R.

For this: notice the following fact (try to prove this!): if z is a complex solution of P(X) (thus is P(z)=0), then the complex conjugate \overline{z} is a solution of P(X).

Thus, in our factorization P(X)=(X-a1)...(X-an), if ai is non-real, then one of the a1,...,an must be \overline{a_i}. And if we multiply (X-a_i)(X-\overline{a_i}), then we get a REAL quadratic polynomial!
Thus P(X) can always be written as a product of linear terms and quadratic terms. This implies that the only possible irreducible polynomials are linear or quadratic.

:) The proof is so cute. Thanks a lot for helping!
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Back
Top