Irreversible Isochoric Process in a Cycle

In summary: The main difference between the two cycles is that in the reversible cycle, the entropy generated is transferred to the surroundings through the isobaric process, while in the irreversible cycle, it stays in the system. This means that the irreversible cycle will have less work done by the gas, resulting in a lower overall efficiency compared to the reversible cycle. Therefore, there are consequences associated with using an irreversible isochoric heat addition, as it leads to a decrease in the net work done by the gas in the cycle.
  • #1
Robert Davidson
32
4
TL;DR Summary
Consider a reversible ideal gas cycle consisting of: 1. An isochoric heat addition, 2. An isothermal expansion to the initial pressure, and 3. An isobaric compression to the initial volume. What, if any, is the difference in net work done by the gas if the isochoric heat addition was irreversible instead of reversible?
Consider a reversible ideal gas cycle consisting of: 1. An isochoric heat addition, 2. An isothermal expansion to the initial pressure, and 3. An isobaric compression to the initial volume. What, if any, is the difference in net work done by the gas in the cycle if the isochoric heat addition was irreversible instead of reversible?

Since no work is done in the isochoric process,

$$\Delta U_{1-2}=Q=nC_{v}(T_{2}-T_{1})$$

for both the reversible and irreversible process. The change in entropy for both a reversible and irreversible process is, using a reversible path involving an infinite series of thermal reservoirs,

$$\Delta S_{sys}=nC_{v}ln\frac{T_2}{T_1}$$

If we assume the irreversible process involves heat addition from a single thermal reservoir at temperature T2, then I believe the entropy generated would be

$$S_{gen}= nC_{v}ln\frac{T_2}{T_1}-\frac{Q}{T_2}$$

In order to complete the cycle, I would think that this entropy generated would need to be transferred to the surroundings in the form of additional heat and that the only opportunity to do this is during the reversible isobaric compression. Then it would seem that the negative work done in the isobaric process should be greater than for the reversible cycle for an overall positive net work of less. However, that can't be the case if the isobaric process connects the same two volumes for both the reversible cycle and irreversible cycle.

Can someone find the error in my reasoning? Thanks in advance.
 
Physics news on Phys.org
  • #2
Hi Bob. Welcome back to PF.

Here is a hint to help you: You don't need to look at the isothermal and isobaric steps of the cycle. The entire answer to your problem lies in the isochoric step.

Chet
 
  • #3
Hmm. Could it be that since no work is done in the isochoric process, be it reversible or irreversible, then there is no impact of the entropy generated on work? Or, to put it another way, the only time entropy generation affects work is if it occurs in a process that produces work?
 
  • #4
Robert Davidson said:
Hmm. Could it be that since no work is done in the isochoric process, be it reversible or irreversible, then there is no impact of the entropy generated on work? Or, to put it another way, the only time entropy generation affects work is if it occurs in a process that produces work?
I don't know about all that with respect to work. But, in the irreversible process, less entropy is transferred to the system from the surroundings in the form of heat, and this is equivalent to the entropy of the surroundings decreasing less for the irreversible process than the reversible process. And this is equivalent to the generated entropy being transferred to the surroundings.

To be even more straightforward about this, in the irreversible process, less entropy is transferred to the system from the surroundings, so, in order for the change in entropy to be the same for the system, the generated entropy has to make up the difference. So, in reality, the generated entropy stays in the system.
 
Last edited:
  • #5
"To be even more straightforward about this, in the irreversible process, less entropy is transferred to the system from the surroundings"

Yes, I calculated that. For the reversible process the entropy transferred to the system from the surroundings is $$\Delta S_{surr}=-nC_{v}ln\frac{T_2}{T_1}$$ For the irreversible path I used (single reservoir T2) it is $$\Delta S_{sur}=\frac{-Q}{T_2}$$ which is less negative than the reversible process for all T2>T1.

"so, in order for the change in entropy to be the same for the system, the generated entropy has to make up the difference".

Yes, that's why I calculated the entropy generated in the system to be $$S_{gen}=nC_{v}ln\frac{T_2}{T_1}-\frac{Q}{T_2}$$

"So, in reality, the generated entropy stays in the system".

OK. So if I the generated entropy stays in the system then it stays in the irreversible cycle I described that includes the irreversible isochoric process. So, are we then to conclude that there is no difference between the cycle with the reversible isochoric heat addition than with the irreversible isochoric heat addition, in terms of the net work produced, cycle efficiency, etc..

In summary, are there any consequences associated with the irreversible isochoric heat addition?
 
  • #6
Robert Davidson said:
"To be even more straightforward about this, in the irreversible process, less entropy is transferred to the system from the surroundings"

Yes, I calculated that. For the reversible process the entropy transferred to the system from the surroundings is $$\Delta S_{surr}=-nC_{v}ln\frac{T_2}{T_1}$$ For the irreversible path I used (single reservoir T2) it is $$\Delta S_{sur}=\frac{-Q}{T_2}$$ which is less negative than the reversible process for all T2>T1.

"so, in order for the change in entropy to be the same for the system, the generated entropy has to make up the difference".

Yes, that's why I calculated the entropy generated in the system to be $$S_{gen}=nC_{v}ln\frac{T_2}{T_1}-\frac{Q}{T_2}$$

"So, in reality, the generated entropy stays in the system".

OK. So if I the generated entropy stays in the system then it stays in the irreversible cycle I described that includes the irreversible isochoric process. So, are we then to conclude that there is no difference between the cycle with the reversible isochoric heat addition than with the irreversible isochoric heat addition, in terms of the net work produced, cycle efficiency, etc..

In summary, are there any consequences associated with the irreversible isochoric heat addition?
Yes. There is no change in the heat and the work, and the changes in entropy and internal energy of the system comprised of the working fluid. The only change is that there is less of a decrease in the entropy of the surroundings in the irreversible path than for the reversible path. So, for the reversible path, there is no change in the entropy of the universe, but, for the irreversible path, there is an increase in the entropy of the universe (equal to the generated entropy). That's all that the 2nd law requires.
 
  • #7
Interesting. Is this unique to the isochoric process? The increase in entropy of the surroundings is due to less entropy transferred to the system, as opposed to the system ridding itself of the entropy generated by transferring it to the surroundings in the form of heat? Is it also unique to the isochoric process that irreversibility does not effect heat and work in a cycle? Or, as I said previously, in order for there to be less work in a cycle the irreversible process needs to be one where work is performed?
 
  • #8
Robert Davidson said:
Interesting. Is this unique to the isochoric process? The increase in entropy of the surroundings is due to less entropy transferred to the system, as opposed to the system ridding itself of the entropy generated by transferring it to the surroundings in the form of heat? Is it also unique to the isochoric process that irreversibility does not effect heat and work in a cycle? Or, as I said previously, in order for there to be less work in a cycle the irreversible process needs to be one where work is performed?
Sorry Bob,

I don't know the answer to any of these questions. I'm pretty good at applying the fundamentals to solve specific problems, but I never felt it was worth the effort to develop general rules for classes of problems.
 
  • #9
Chet
No problem. But thank you very much for clearing this one up for me. I confess to a tendency to try and identify general rules, or at least to try and get an in depth feeling for a rule. As usual, I really appreciate your time.

Bob
 

1. What is an irreversible isochoric process in a cycle?

An irreversible isochoric process in a cycle is a thermodynamic process in which the volume of a system remains constant, while the internal energy and temperature of the system change. This process is irreversible because the system does not return to its original state at the end of the cycle.

2. What is the difference between an irreversible isochoric process and a reversible isochoric process?

In an irreversible isochoric process, the system does not return to its original state at the end of the cycle, while in a reversible isochoric process, the system does return to its original state. This is because in a reversible process, the system is able to maintain equilibrium throughout the cycle, while in an irreversible process, there is a loss of equilibrium at some point.

3. What are some examples of irreversible isochoric processes?

Some examples of irreversible isochoric processes include the combustion of fuel in an engine, the expansion of a gas in a closed container, and the melting of a solid substance. These processes involve a change in internal energy and temperature, but the volume of the system remains constant.

4. How is entropy affected by an irreversible isochoric process?

In an irreversible isochoric process, entropy increases as the system moves away from equilibrium. This is because irreversible processes involve an increase in disorder and randomness, leading to an increase in entropy.

5. What are the practical applications of irreversible isochoric processes?

Irreversible isochoric processes have many practical applications, such as in engines, refrigeration systems, and power plants. These processes allow for the conversion of energy from one form to another, making them essential in various industries and technologies.

Similar threads

Replies
56
Views
3K
Replies
22
Views
2K
  • Introductory Physics Homework Help
Replies
1
Views
921
Replies
5
Views
1K
Replies
12
Views
1K
Replies
15
Views
1K
Replies
7
Views
1K
Replies
33
Views
4K
Replies
1
Views
757
  • Introductory Physics Homework Help
Replies
1
Views
1K
Back
Top