Red_CCF
- 530
- 0
Chestermiller said:In an irreversible process, the pressure and the temperature are both functions of position (at a given time), there is probably not just one unique average temperature and average pressure for the system that also satisfy the ideal gas law. Even if we mathematically define average pressure and temperature in such a way that the ideal gas law is satisfied, it is unlikely that these values will have any physical relevance, and they couldn't be used to correctly calculate the amount of work that is done. So, what good is that.
Is the point of the ideal gas law pressure/temperature to describe the state of the whole system during at any point in process with one pressure and temperature (only possible if reversible), and if the process is irreversible, this becomes meaningless due to spatial variations of the properties in the system?
In Pippard's free expansion example where he states δW≠ PdV, what pressure is this/what does it "describe"?
Chestermiller said:dU = TdS - pdV describes the changes in U, S, and V between two differentially separated equilibrium states. For an irreversible process between these same two differentially separated equilibrium states, the equation q = TdS - ε suggests that the heat transferred along the irreversible path is less than the heat transferred along the reversible path; but this is equivalent to the Clausius inequality only if T for the irreversible path is taken as the temperature at the interface for the reversible path. However, then TIdS in not really the heat transferred over the reversible path. I'm a little uncomfortable with this interpretation. I would have preferred that they had written: q = TIdS - ε. Maybe they felt that, for differentially separated equilibrium states, the difference between T for the reversible path and TI for the irreversible path would be insignificant.
For the bolded, if some irreversible process is performed, why must we use TI of a reversible process and not the TI of the actual (irreversible) process we are performing for equivalence to Clausius inequality? How come TIdS for a reversible process does not equal δQ?
What dictates in the TdS equation that if q = TdS - ε then w = -pdV + ε? Is ε = T*dσ (entropy generation)?
Does σI have any role in the TdS equations if the process is irreversible or is it only the pressure component of the stress included? What do we use for the pressure term in TdS equations during irreversible processes?
Chestermiller said:In a quasitatic irreversible process, it is reasonable to assume that the viscous stresses are neglibible, and the pressure is uniform within the system. But this doesn't mean that the temperature is uniform. If the temperature is not uniform, and you know the temperature distribution, you can still calculate the pressure at the interface and use that to calculated dW = pdV. However, it will not be equal to (nRT/V)dV, and you would have to do calculations to take into account the variations of both temperature and molar density within the cylinder, under the constraint that the total number of moles is constant. But this is just the kind of thing you are trying to avoid (detailed analysis of the variations within the system) when you use the first law.
When you say that PI ≠ nRT/V or RT/v, is the T and v here interface properties or something else?
Thanks very much