Is 2x the Correct Derivative of y = x^2?

  • Thread starter Thread starter Miike012
  • Start date Start date
  • Tags Tags
    Derivative
Miike012
Messages
1,009
Reaction score
0

Homework Statement



Say y = x^2

For the right side if I wanted to differentiate it would I write
d(x^2)/dx = 2x

Is that correct?

Homework Equations





The Attempt at a Solution

 
Physics news on Phys.org
You can just write 2x as long as you write dy/dx on the left side.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top