Is a Non-Square Matrix Always Linearly Dependent?

eyehategod
Messages
82
Reaction score
0
Prove that if A is not square, then either the row vectors of A or column vectors of A form a linearly dependent set.

can anyone help me out with this proof? I have no idead how to start.
 
Physics news on Phys.org
What is your definition of linearly dependent?
 
If you have a set of n vectors with m components and n>m, can they be linearly independent?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top