Is A_{i.j} - A_{j.i} a Tensor Under Non-Linear Transformations?

  • Thread starter Thread starter JohanL
  • Start date Start date
  • Tags Tags
    Tensor
JohanL
Messages
154
Reaction score
0
prove that for any vector

A_i

the expression

A_{i.j}-A_{j.i}

is a tensor, even under non-linear transformations. Similarly prove that for any antisymmetric tensor

E_{ij}

the expression

E_{ij.k}+E_{jk.i}+E_{ki.j}

is a tensor.

____________________________

What does the dots mean?
For example between i and j in i.j ?
 
Last edited:
Physics news on Phys.org
Thanks.
I solved the problem except that about
even under non-linear transformations.
non-linear transformations from one set of coordinates to another?
what changes if its non-linear transformations?
 
Maybe non-linear means higher order terms in partials derivitives of the coordinates? They would cancel out in the examples given.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top