I Does the Topology of AdS4 Affect Global Hyperbolicity?

  • I
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Hyperbolic
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Is ##\mathrm{AdS_4}## globally hyperbolic?$$g = -\left(1+ \dfrac{r^2}{l^2} \right)dt^2 + \dfrac{dr^2}{1+ \dfrac{r^2}{l^2}}+ r^2d\Omega^2$$Letting ##r = l \tan \chi## then defining ##\tilde{g} = g \cos^2 \chi##\begin{align*}
g &= \sec^2 \chi (-dt^2 + l^2 d\chi^2) + l^2 \tan^2 \chi d\Omega^2 \\ \\

\tilde{g} &= -dt^2 + l^2 (d\chi^2 + \sin^2 \chi d\Omega^2) \\
\tilde{g} &= -dt^2 + l^2 d\omega^2\end{align*}the topology is ##\mathbb{R} \times S^3##. Does global hyperbolicity of ##\tilde{g}## ##\iff## global hyperbolicity of ##g##?
 
Last edited:
Physics news on Phys.org
I don't know anything about string theory, but isn't that coordinate system a mapping to ##\mathbb{R^2} \times S^2## not ##\mathbb{R^1} \times S^3##? It looks like only two angles and a radius to me (plus time). Am I missing something?

If I'm missing something obvious, ignore me. I just chimed in because the thread went unanswered.
 
  • Like
Likes ergospherical
My thinking was that ##l^2(d\chi^2 + \sin^2 \chi d\Omega^2)## is the round metric on a ##3##-sphere of radius ##l## (or in fact since ##\chi \in \bigg{[} 0, \dfrac{\pi}{2} \bigg{)}## it'll only be half of the 3-sphere...)
 
Last edited:
Just to make sure we're talking about the same thing, when you say ##S^3##, you mean a surface embedded in ##\mathbb{R}^4## given by ##x^2 + y^2 + z^2 + w^2 = 1##, right? As in, the sphere that is diffeomorphic to the special orthogonal group ##\mathrm{SO}(3)## and the special unitary group ##\mathrm{SU}(2)##, right?
 
  • Like
Likes ergospherical
Yeah, and ##(\chi, \theta, \varphi)## would be the hyperspherical coordinates on the 3-sphere of radius ##l##.
 
I'm a dope and I only just caught that ##d\Omega^2## was a total solid angle over ##S^2##. Now I'm on board with your claim about the topology. Sorry for derailing ya
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...

Similar threads

Replies
5
Views
2K
Replies
4
Views
1K
Replies
13
Views
2K
Replies
6
Views
2K
Replies
11
Views
2K
Replies
5
Views
1K
Back
Top