Q-reeus
- 1,115
- 3
I'm ignoring your earlier posting #37 and later one in #41 (but accept the nice sentiments in #39), as it all hinges on getting right what you say here. Maybe you have already changed again - I say 'again' because in #22 there is "I was mistaken in my first response--allowing a dropping mass to do work does change the total mass/energy." - which was a seeming backflip from your earlier position, and amazingly you seem to have done another 180 and it's back to the original stance. [Stop press: just now read your #46. Evidently then you believe the energy gain/loss is to be considered a wholly delocalized affair - shared amongst the entire system more or less equally?] Then consider the following:stevendaryl said:I guess the reason that I didn't respond specifically to this scenario is because it seems to start with a number of assumptions that I don't think are true at all. First, what does it mean to say that when you lower a mass, it "reduces in coordinate measure as m' = fm, with f the usual redshift expression". Where did you get that idea, that mass reduces by the redshift formula? I think that you are starting with an inconsistent notion of what GR says about mass.
Suppose that mass/energy in a slowly lowered mass m is in the form of an unstable matter/antimatter doublet that self-annihilates and escapes entirely 'to infinity' as gamma rays. We surely agree that in escaping the gravitational potential well of central mass M, those rays - which carry all the energy tied up originally in m(r), are redshifted in coordinate measure. Annihilate the same matter/antimatter doublet out there in distant space, and obviously the gamma rays are not redshifted at all. This little experiment of the mind imo nicely indicates it is proper to consider the energy loss/gain in lowering/raising matter/energy of mass m(r) in a grav well as essentially confined to just that mass m(r) - provided m(r) << M. Unless that is one wishes to argue transporting matter/energy from a resting position at one potential to a resting position at another potential can be anything but a path independent process - assuming of course central mass M is taken as static. Again if one argues those gamma rays are not 'resting' just remember we are free to have them absorbed by nuclei in a massive block of matter etc. which then constitutes resting position.
You might also care to look again at the parallel-plate capacitor situation of last para in #24. We agree that locally, it only makes sense to ascribe energy loss (transfer of energy to higher up via electrical line) upon capacitor discharge to be confined essentially to the capacitor field-charge system, not say the planet of mass M as a whole. Again, haul the charged capacitor up to higher potential, then discharge. More power available - gained via the hauling process - and to be located in the capacitor field. It's only when masses are roughly comparable that delocalization/sharing becomes significant.
There has been some nitpickery over fine distinctions between mass and energy but let's recall the scenario 1: in #1 to which you have at least specifically addressed in #40 as quoted above - it's one of slow lowering. For which it's then perfectly appropriate to treat the mass/charge as momentarily resting at a given height. What then is the distinction between rest mass and total stress-energy? Sure there must be stress in the matter involved (it feels 'g' forces) and yes technically that comes under a different part of the stress-energy tensor contribution to total gravitating mass m(r). It will though be typically extremely small compared to the rest energy part, and anyway acts here simply as a scalar additive term. So can we please just take it that m(r) is inclusive of rest energy and stress without further fuss and ado?
Re your's and to some extent PeterDonis's criticism of jartsa over his description of atoms being 'weaker' further down. The local perspective is not the only legitimate one and from a coordinate viewpoint I would agree with his thrust. There is something similar in SR. A slab of dielectric lies immersed in an E field of a parallel plate capacitor. Both dielectric and capacitor are stationary in lab frame S', and E' there is below dielectric breakdown value. Now propel that slab to a relativistic velocity in S', normal to direction of E' such that in proper frame S of slab, E exceeds breakdown value and there is catastrophic failure and discharge. It is not legitimate to say that in S' the slab can be viewed as having 'weakened', since E has not changed in S'? Notice too that in jartsa's scenario if an atom spontaneously decays radioactively releasing a gamma ray, it is redshifted as seen from outside of potential well. That can legitimately qualify it as a 'weaker' atom with weaker internal EM and nuclear fields in my book - it's all a matter of pov.
There is a potential can of worms I'm uncovering or rather rediscovering in working through all the ways of looking at how mass, energy, momentum, field etc. should be evaluated in coordinate measure - more later. Maybe much later.